Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Premade Virus Particles
Ready-to-Use | High Titer | Versatile Applications
Premade AAV, adenovirus, lentivirus particles, safe, stable, in stock.
Virus-Like Particles (VLPs)
Stable | Scalable | Customizable
Advanced VLPs for vaccine development (Chikungunya, Dengue, SARS-CoV-2), gene therapy (AAV1 & AAV9), and drug screening (SSTR2, CCR5).
Oligonucleotide Products
Precise | High Yield | Tailored Solutions
Accelerate your research with cost-effective LncRNA qPCR Array Technology.
RNA Interference Products
Targeted | Potent | High Specificity
Human Druggable Genome siRNA Library enables efficient drug target screening.
Recombinant Drug Target Proteins
Authentic | Versatile | Accelerated
Providing functional, high-purity recombinant proteins—including membrane proteins and nanodiscs—to overcome bottlenecks in drug screening and target validation.
Clones
Validated | Reliable | Comprehensive Collection
Ready-to-use clones for streamlined research and development.
Kits
Complete | Convenient | High Sensitivity
Chromogenic LAL Endotoxin Assay Kit ensures precise, FDA-compliant endotoxin quantification for biosafety testing.
Enzymes
Purified | Stable | Efficient
Powerful Tn5 Transposase for DNA insertion and random library construction.
Aptamers
Highly Specific | Robust | Versatile
Aptamers for key proteins like ACVR1A, Akt, EGFR, and VEGFR.
Adjuvants
Enhancing | Synergistic | Effective
Enhance immune responses with high-purity, potent CpG ODNs.
Laboratory Equipment
Innovative | Reliable | High-Precision
Effortlessly streamline DNA extraction with CB™ Magnetic-Nanoparticle Systems.
Stable Cell Line Generation
Reliable | Scalable | Customizable
Fast proposals, regular updates, and detailed reports; strict quality control, and contamination-free cells; knockout results in 4-6 weeks.
Target-based Drug Discovery Service
Innovative | Comprehensive | Efficient
Target identification, validation, and screening for drug discovery and therapeutic development.
Custom Viral Service
Versatile | High-Yield | Safe
Unbeatable pricing, fully customizable viral packaging services (covering 30,000+ human genes, 200+ mammals, 50+ protein tags).
Custom Antibody Service
Precise | Flexible | Efficient
End-to-end antibody development support, from target to validation, enabling clients to rapidly obtain application-ready antibodies.
Antibody-Drug Conjugation Service
Integrated | Controlled | Translational
Comprehensive solutions covering design, development, and validation to ensure conjugated drugs with consistent quality and clinical potential.
Protein Degrader Service
Efficient | High-Precision | Advanced Therapeutics
Harness the power of protein degraders for precise protein degradation, expanding druggable targets and enhancing therapeutic effectiveness for cutting-edge drug discovery.
Nucleotides Service
Accurate | Flexible | High-Quality
Custom synthesis of oligonucleotides, primers, and probes for gene editing, PCR, and RNA studies.
Custom RNA Service
Custom RNA ServicePrecise | Flexible | GMP-ReadyCustom
RNA design, synthesis, and manufacturing—covering mRNA, saRNA, circRNA, and RNAi. Fast turnaround, rigorous QC, and seamless transition from research to GMP production.
Custom Libraries Construction Service
Comprehensive | High-throughput | Accurate
Custom cDNA, genomic, and mutagenesis libraries for drug discovery, screening, and functional genomics.
Gene Editing Services
Precise | Efficient | Targeted
Gene editing solutions for gene editing, knockouts, knock-ins, and customized genetic modifications. Integrated multi-platform solutions for one-stop CRISPR sgRNA library synthesis and gene screening services
Microbe Genome Editing Service
Precise | Scalable | Customizable
Enhance microbial productivity with advanced genome editing using Rec-mediated recombination and CRISPR/Cas9 technologies.
Biosafety Testing Service
Reliable | Comprehensive | Regulated
Complete biosafety testing solutions for gene therapy, viral vectors, and biologics development.
Plant Genetic Modification Service
Advanced | Sustainable | Tailored
Genetic modification for crop improvement, biotechnology, and plant-based research solutions.
Plant-based Protein Production Service
Efficient | Scalable | Customizable
Plant-based protein expression systems for biopharmaceuticals, enzyme production, and research.
Aptamers Service
Innovative | Fast | Cost-Effective
Revolutionizing drug delivery and diagnostic development with next-generation high-throughput aptamer selection and synthesis technologies.
CGT Biosafety Testing
Comprehensive | Accurate | Regulatory-compliant
Internationally certified evaluation system for biologics, gene therapies, nucleic acid drugs, and vaccines.
Pandemic Detection Solutions
Rapid | Precise | Scalable
Balancing accuracy, accessibility, affordability, and rapid detection to safeguard public health and strengthen global response to infectious diseases.
cGMP Cell Line Development
Reliable | Scalable | Industry-leading
Stable expression over 15 generations with rapid cell line development in just 3 months.
Supports adherent and suspension cell lines, offering MCB, WCB, and PCB establishment.
GMP mRNA Production
Efficient | Scalable | Precise
Scalable mRNA production from milligrams to grams, with personalized process design for sequence optimization, cap selection, and nucleotide modifications, all in one service.
GMP Plasmid Production
High Quality | Scalable | Regulatory-compliant
Our plasmid production services span Non-GMP, GMP-Like, and GMP-Grade levels, with specialized options for linearized plasmids.
GMP Viral Vector Manufacturing
Scalable | High Yield | Quality-driven
Advanced platforms for AAV, adenovirus, lentivirus, and retrovirus production, with strict adherence to GMP guidelines and robust quality control.
AI-Driven Gene Editing and Therapy
Innovative | Precision | Transformative
AI-powered one-click design for customized CRISPR gene editing strategy development.
AI-Antibody Engineering Fusion
Next-Generation | Targeted | Efficient
AI and ML algorithms accelerate antibody screening and predict new structures, unlocking unprecedented possibilities in antibody engineering.
AI-Driven Enzyme Engineering
Smart | Efficient | Tailored
High-throughput enzyme activity testing with proprietary datasets and deep learning models for standardized and precise enzyme engineering design.
AI-Enhanced Small Molecule Screening
Predictive | Efficient | Insightful
Leverage AI to uncover hidden high-potential small molecules, prioritize leads intelligently, and reduce costly trial-and-error in early drug discovery.
AI-Driven Protein Degrader Drug Development
Innovative | Targeted | Accelerated
Use AI-guided design to optimize protein degraders, addressing design complexity and enhancing efficacy while shortening development timelines.
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
Recent Progress
The lysosomal adaptor protein Lamtor1 is an essential anchor of a scaffolding complex for the mTORC1 and MAPK pathways, which play an indispensable role in controlling cell growth and energy homeostasis. To elucidate the in vivo function of the Lamtor1-mediated pathway, researchers conditionally studied Lamtor1 in the mouse epidermis. Results showed that loss of Lamtor1 attenuated lysosome function, leading to accumulation of immature lysosomes and autophagosomes. Analyses of lysosome behavior revealed that Lamtor1 is required for functional interaction between lysosomes and target organelles including autophagosomes. These findings suggested that Lamtor1-mediated pathways can control lysosome-mediated catabolic processes, which are crucial for the development of mouse epidermis.
It is also known that LAMTOR1 is specifically localized to the surface of late lysosomes which serve as an anchor for the "Ragulator" complex. The Ragulator interacts with RagAB/CD GTPases and V-ATPase and plays crucial roles for activation of mechanistic target of rapamycin complex 1 (mTORC1) on the lysosomal surface. Activated mTORC1 organizes various cellular functions, for example, macromolecule biosynthesis, energy metabolism, autophagy, cell growth, responses to growth factors, and the trafficking and maturation of lysosomes. The Ragulator can also regulate a branch of the MAPK pathway by recruiting MEK1 to MP1/LAMTOR3. These findings suggested that LAMTOR1 creates a core platform for intracellular signaling pathways that function via late lysosomes (Fig.1).
Fig. 1. Effects of inhibitors of mTORC1 and MAPK pathways on interaction between lysosomes and autophagosomes. (Nada et al, 2014)
Another group of researchers showed that Lamtor1 is capable of forming an amino-acid sensing complex with lysosomal vacuolar-type H+-ATPase (v-ATPase) and is critically required for M2 polarization. Lamtor1 deficiency, amino-acid starvation, or inhibition of v-ATPase and mTOR(mechanistic target of rapamycin) resulted in defective M2 polarization and enhanced M1 polarization. Furthermore, it was identified that liver X receptor (LXR) serve as the downstream target of Lamtor1 and mTORC1. Production of 25-hydroxycholesterol is dependent on Lamtor1 and mTORC1. These findings demonstrated that Lamtor1 plays an essential role in M2 polarization, coupling immunity and metabolism.
Accumulating evidence also indicated that the lysosomal Ragulator complex is essential for full activation of the mechanistic target of rapamycin complex 1 (mTORC1). Abnormal mTORC1 activation has been implicated in several developmental neurological disorders, including Angelman syndrome (AS), which is caused by maternal deficiency of the ubiquitin E3 ligase UBE3A. Investigators reported that UBE3A regulates mTORC1 signaling by targeting Lamtor1, which is a subunit of the Ragulator. UBE3A ubiquinates Lamtor1, resulting in its proteasomal degradation, and its deficiency in hippocampus of AS mice led to increased lysosomal localization of Lamtor1. Moreover, other members of the Ragulator-Rag complex displayed increased mTORC1 activity. LAMTOR1 down-regulation by siRNA in hippocampal CA1 neurons of AS mice reduces mTORC1 activity and improves long-term potentiation (LTP) along with dendritic spine maturation. These findings indicated that UBE3A-mediated regulation of Lamtor1 and subsequent mTORC1 signaling are critical for typical synaptic plasticity and dendritic spine development.
Interestingly, studies using mice with conditional knockout of mTORC1 component proteins gave conflicting results on the roles of mTORC1 in CD4+ T cells. Through investigation, researchers showed that Lamtor1-deficient CD4+ T cells exhibited marked reductions in proliferation, IL-2 production, mTORC1 activity, and expression of purine- and lipid-synthesis genes. Polarization of Th17 cells, but not Th1 and Th2 cells, diminished following the loss of Lamtor1. Lamtor1-deficient regulatory T cells survived ex vivo as long as wild-type regulatory T cells; however, they exhibited a marked loss of suppressive function and expression of signature molecules. These results indicated that Lamtor1 plays essential roles in CD4+ T cells, suggesting that Lamtor1 should be considered a novel therapeutic target in immune systems.
References:
Contact us today for a free consultation with the scientific team and discover how Creative Biogene can be a valuable resource and partner for your organization.
Inquiry
Copyright © Creative Biogene. All rights reserved.