Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Premade Virus Particles
Ready-to-Use | High Titer | Versatile Applications
Premade AAV, adenovirus, lentivirus particles, safe, stable, in stock.
Virus-Like Particles (VLPs)
Stable | Scalable | Customizable
Advanced VLPs for vaccine development (Chikungunya, Dengue, SARS-CoV-2), gene therapy (AAV1 & AAV9), and drug screening (SSTR2, CCR5).
Oligonucleotide Products
Precise | High Yield | Tailored Solutions
Accelerate your research with cost-effective LncRNA qPCR Array Technology.
RNA Interference Products
Targeted | Potent | High Specificity
Human Druggable Genome siRNA Library enables efficient drug target screening.
Recombinant Drug Target Proteins
Authentic | Versatile | Accelerated
Providing functional, high-purity recombinant proteins—including membrane proteins and nanodiscs—to overcome bottlenecks in drug screening and target validation.
Clones
Validated | Reliable | Comprehensive Collection
Ready-to-use clones for streamlined research and development.
Kits
Complete | Convenient | High Sensitivity
Chromogenic LAL Endotoxin Assay Kit ensures precise, FDA-compliant endotoxin quantification for biosafety testing.
Enzymes
Purified | Stable | Efficient
Powerful Tn5 Transposase for DNA insertion and random library construction.
Aptamers
Highly Specific | Robust | Versatile
Aptamers for key proteins like ACVR1A, Akt, EGFR, and VEGFR.
Adjuvants
Enhancing | Synergistic | Effective
Enhance immune responses with high-purity, potent CpG ODNs.
Laboratory Equipment
Innovative | Reliable | High-Precision
Effortlessly streamline DNA extraction with CB™ Magnetic-Nanoparticle Systems.
Stable Cell Line Generation
Reliable | Scalable | Customizable
Fast proposals, regular updates, and detailed reports; strict quality control, and contamination-free cells; knockout results in 4-6 weeks.
Target-based Drug Discovery Service
Innovative | Comprehensive | Efficient
Target identification, validation, and screening for drug discovery and therapeutic development.
Custom Viral Service
Versatile | High-Yield | Safe
Unbeatable pricing, fully customizable viral packaging services (covering 30,000+ human genes, 200+ mammals, 50+ protein tags).
Custom Antibody Service
Precise | Flexible | Efficient
End-to-end antibody development support, from target to validation, enabling clients to rapidly obtain application-ready antibodies.
Antibody-Drug Conjugation Service
Integrated | Controlled | Translational
Comprehensive solutions covering design, development, and validation to ensure conjugated drugs with consistent quality and clinical potential.
Protein Degrader Service
Efficient | High-Precision | Advanced Therapeutics
Harness the power of protein degraders for precise protein degradation, expanding druggable targets and enhancing therapeutic effectiveness for cutting-edge drug discovery.
Nucleotides Service
Accurate | Flexible | High-Quality
Custom synthesis of oligonucleotides, primers, and probes for gene editing, PCR, and RNA studies.
Custom RNA Service
Custom RNA ServicePrecise | Flexible | GMP-ReadyCustom
RNA design, synthesis, and manufacturing—covering mRNA, saRNA, circRNA, and RNAi. Fast turnaround, rigorous QC, and seamless transition from research to GMP production.
Custom Libraries Construction Service
Comprehensive | High-throughput | Accurate
Custom cDNA, genomic, and mutagenesis libraries for drug discovery, screening, and functional genomics.
Gene Editing Services
Precise | Efficient | Targeted
Gene editing solutions for gene editing, knockouts, knock-ins, and customized genetic modifications. Integrated multi-platform solutions for one-stop CRISPR sgRNA library synthesis and gene screening services
Microbe Genome Editing Service
Precise | Scalable | Customizable
Enhance microbial productivity with advanced genome editing using Rec-mediated recombination and CRISPR/Cas9 technologies.
Biosafety Testing Service
Reliable | Comprehensive | Regulated
Complete biosafety testing solutions for gene therapy, viral vectors, and biologics development.
Plant Genetic Modification Service
Advanced | Sustainable | Tailored
Genetic modification for crop improvement, biotechnology, and plant-based research solutions.
Plant-based Protein Production Service
Efficient | Scalable | Customizable
Plant-based protein expression systems for biopharmaceuticals, enzyme production, and research.
Aptamers Service
Innovative | Fast | Cost-Effective
Revolutionizing drug delivery and diagnostic development with next-generation high-throughput aptamer selection and synthesis technologies.
CGT Biosafety Testing
Comprehensive | Accurate | Regulatory-compliant
Internationally certified evaluation system for biologics, gene therapies, nucleic acid drugs, and vaccines.
Pandemic Detection Solutions
Rapid | Precise | Scalable
Balancing accuracy, accessibility, affordability, and rapid detection to safeguard public health and strengthen global response to infectious diseases.
cGMP Cell Line Development
Reliable | Scalable | Industry-leading
Stable expression over 15 generations with rapid cell line development in just 3 months.
Supports adherent and suspension cell lines, offering MCB, WCB, and PCB establishment.
GMP mRNA Production
Efficient | Scalable | Precise
Scalable mRNA production from milligrams to grams, with personalized process design for sequence optimization, cap selection, and nucleotide modifications, all in one service.
GMP Plasmid Production
High Quality | Scalable | Regulatory-compliant
Our plasmid production services span Non-GMP, GMP-Like, and GMP-Grade levels, with specialized options for linearized plasmids.
GMP Viral Vector Manufacturing
Scalable | High Yield | Quality-driven
Advanced platforms for AAV, adenovirus, lentivirus, and retrovirus production, with strict adherence to GMP guidelines and robust quality control.
AI-Driven Gene Editing and Therapy
Innovative | Precision | Transformative
AI-powered one-click design for customized CRISPR gene editing strategy development.
AI-Antibody Engineering Fusion
Next-Generation | Targeted | Efficient
AI and ML algorithms accelerate antibody screening and predict new structures, unlocking unprecedented possibilities in antibody engineering.
AI-Driven Enzyme Engineering
Smart | Efficient | Tailored
High-throughput enzyme activity testing with proprietary datasets and deep learning models for standardized and precise enzyme engineering design.
AI-Enhanced Small Molecule Screening
Predictive | Efficient | Insightful
Leverage AI to uncover hidden high-potential small molecules, prioritize leads intelligently, and reduce costly trial-and-error in early drug discovery.
AI-Driven Protein Degrader Drug Development
Innovative | Targeted | Accelerated
Use AI-guided design to optimize protein degraders, addressing design complexity and enhancing efficacy while shortening development timelines.
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
GADD45B is a member of the growth arrest DNA damage-inducible gene (GADD45) family, which consists of GADD45A (GADD45), GADD45B (MYD118), and GADD45G (cytokine response gene 6). This gene family encodes small, evolutionarily conserved proteins, sharing homology and high acidity. GADD45B was previously identified as a primary response gene in myeloid differentiation activated by interleukin-6 in the mouse myeloid leukemia cell line M1, which is associated with cell apoptosis, cell growth control, and cellular responses to DNA damage. Several studies on non-neuronal cells have indicated Gadd45b as an anti-apoptosis gene. Gadd45b was identified as an intrinsic neuroprotective molecule in retinal ganglion cells.
Gadd45b and neuronal apoptosis
Gadd45 has been identified as a stress-response gene to physiological or environmental conditions, and is originally induced by genotoxic agents. Gadd45a has been demonstrated as a pro-apoptosis gene in neuronal injuries and Gadd45b has been implicated as an anti-apoptosis factor. The recent research showed that Gadd45b inhibits neuronal apoptosis after cerebral ischemia. Gadd45b is significantly involved in preventing RGC death, which is consistent with its anti-apoptotic role in neurons. Gadd45b also inhibits apoptosis in other cell types, such as INS-1Eb and NIH3T3 cells. By contrast, Gadd45b was found to induce apoptotic death in cardiomyocytes, murine hepatocytes, and other cell types. Therefore, the function of Gadd45b in apoptosis appears to be cell type specific.
Gadd45b reduces brain apoptosis, but the mechanism of Gadd45b in apoptosis is not clear. Gadd45b could regulate apoptosis through regulating BDNF and downstream regulatory apoptotic proteins in ischemic stroke. First, Gadd45b promote regulates DNA demethylation of the regulatory regions of BDNF. Gadd45b knockout mice show a decrease in the BDNF gene expression. Second, a number of previous studies have clearly shown that activating BDNF-associated apoptotic proteins inhibits neuronal apoptotic cell death. Thirdly, the study indicated that Gadd45b-RNAi treatment obviously down-regulated BDNF expression and subsequent apoptosis after ischemic brain injury.
GADD45B and cancer
Colorectal carcinoma (CRC) carcinogenesis is a complicated and multifactorial process resulting from a number of environmental exposures. This process involves the combined actions of multiple oncogenes and tumor suppressor genes. As a negative growth-control gene, GADD45B is implicated in DNA damage, cell cycle arrest, and apoptosis. Higher expressions of GADD45B are associated with a higher risk of recurrence based on a cluster analysis of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. A recent study suggested that GADD45B was significantly up-regulated in CRC. Accordingly, it can postulate that abnormal expression of GADD45B could be involved with the carcinogenesis of CRC and it showed potential for use as a prognostic marker in future.
Several studies have reported that GADD45B was decreased in human hepatocellular carcinoma (HCC). Compared with the high levels of staining in colon cancer, prostate cancer, breast cancer, lymphoma, squamous cell carcinoma, and leiomyosarcoma, the under-expression of GADD45B was specific to liver cancer. As a novel pituitary tumor suppressor, microarray data showed the loss of GADD45B in gonadotrope tumors where its repression modulates cell proliferation, survival, and tumorigenicity. The hierarchical clustering of 19 pancreatic neuroendocrine tumors (PNETs) revealed that GADD45B was one of the most highly upregulated genes in the malignant group of PNETs. Thus, there is still controversy regarding the expression and function of GADD45B in multiple tumors. Abnormal expression of GADD45B is similar to tumor suppressor p53 and phosphatase and tensin homologue (PTEN), both of which showing high expression in some head and neck cancers, and mammary cancer. Further investigations are needed to determine the underlying mechanisms behind the dysfunction of GADD45B and CRC tumorigenesis.
References:
Contact us today for a free consultation with the scientific team and discover how Creative Biogene can be a valuable resource and partner for your organization.
Inquiry
Copyright © Creative Biogene. All rights reserved.