Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Premade Virus Particles
Ready-to-Use | High Titer | Versatile Applications
Premade AAV, adenovirus, lentivirus particles, safe, stable, in stock.
Virus-Like Particles (VLPs)
Stable | Scalable | Customizable
Advanced VLPs for vaccine development (Chikungunya, Dengue, SARS-CoV-2), gene therapy (AAV1 & AAV9), and drug screening (SSTR2, CCR5).
Oligonucleotide Products
Precise | High Yield | Tailored Solutions
Accelerate your research with cost-effective LncRNA qPCR Array Technology.
RNA Interference Products
Targeted | Potent | High Specificity
Human Druggable Genome siRNA Library enables efficient drug target screening.
Recombinant Drug Target Proteins
Authentic | Versatile | Accelerated
Providing functional, high-purity recombinant proteins—including membrane proteins and nanodiscs—to overcome bottlenecks in drug screening and target validation.
Clones
Validated | Reliable | Comprehensive Collection
Ready-to-use clones for streamlined research and development.
Kits
Complete | Convenient | High Sensitivity
Chromogenic LAL Endotoxin Assay Kit ensures precise, FDA-compliant endotoxin quantification for biosafety testing.
Enzymes
Purified | Stable | Efficient
Powerful Tn5 Transposase for DNA insertion and random library construction.
Aptamers
Highly Specific | Robust | Versatile
Aptamers for key proteins like ACVR1A, Akt, EGFR, and VEGFR.
Adjuvants
Enhancing | Synergistic | Effective
Enhance immune responses with high-purity, potent CpG ODNs.
Laboratory Equipment
Innovative | Reliable | High-Precision
Effortlessly streamline DNA extraction with CB™ Magnetic-Nanoparticle Systems.
Stable Cell Line Generation
Reliable | Scalable | Customizable
Fast proposals, regular updates, and detailed reports; strict quality control, and contamination-free cells; knockout results in 4-6 weeks.
Target-based Drug Discovery Service
Innovative | Comprehensive | Efficient
Target identification, validation, and screening for drug discovery and therapeutic development.
Custom Viral Service
Versatile | High-Yield | Safe
Unbeatable pricing, fully customizable viral packaging services (covering 30,000+ human genes, 200+ mammals, 50+ protein tags).
Custom Antibody Service
Precise | Flexible | Efficient
End-to-end antibody development support, from target to validation, enabling clients to rapidly obtain application-ready antibodies.
Antibody-Drug Conjugation Service
Integrated | Controlled | Translational
Comprehensive solutions covering design, development, and validation to ensure conjugated drugs with consistent quality and clinical potential.
Protein Degrader Service
Efficient | High-Precision | Advanced Therapeutics
Harness the power of protein degraders for precise protein degradation, expanding druggable targets and enhancing therapeutic effectiveness for cutting-edge drug discovery.
Nucleotides Service
Accurate | Flexible | High-Quality
Custom synthesis of oligonucleotides, primers, and probes for gene editing, PCR, and RNA studies.
Custom RNA Service
Custom RNA ServicePrecise | Flexible | GMP-ReadyCustom
RNA design, synthesis, and manufacturing—covering mRNA, saRNA, circRNA, and RNAi. Fast turnaround, rigorous QC, and seamless transition from research to GMP production.
Custom Libraries Construction Service
Comprehensive | High-throughput | Accurate
Custom cDNA, genomic, and mutagenesis libraries for drug discovery, screening, and functional genomics.
Gene Editing Services
Precise | Efficient | Targeted
Gene editing solutions for gene editing, knockouts, knock-ins, and customized genetic modifications. Integrated multi-platform solutions for one-stop CRISPR sgRNA library synthesis and gene screening services
Microbe Genome Editing Service
Precise | Scalable | Customizable
Enhance microbial productivity with advanced genome editing using Rec-mediated recombination and CRISPR/Cas9 technologies.
Biosafety Testing Service
Reliable | Comprehensive | Regulated
Complete biosafety testing solutions for gene therapy, viral vectors, and biologics development.
Plant Genetic Modification Service
Advanced | Sustainable | Tailored
Genetic modification for crop improvement, biotechnology, and plant-based research solutions.
Plant-based Protein Production Service
Efficient | Scalable | Customizable
Plant-based protein expression systems for biopharmaceuticals, enzyme production, and research.
Aptamers Service
Innovative | Fast | Cost-Effective
Revolutionizing drug delivery and diagnostic development with next-generation high-throughput aptamer selection and synthesis technologies.
CGT Biosafety Testing
Comprehensive | Accurate | Regulatory-compliant
Internationally certified evaluation system for biologics, gene therapies, nucleic acid drugs, and vaccines.
Pandemic Detection Solutions
Rapid | Precise | Scalable
Balancing accuracy, accessibility, affordability, and rapid detection to safeguard public health and strengthen global response to infectious diseases.
cGMP Cell Line Development
Reliable | Scalable | Industry-leading
Stable expression over 15 generations with rapid cell line development in just 3 months.
Supports adherent and suspension cell lines, offering MCB, WCB, and PCB establishment.
GMP mRNA Production
Efficient | Scalable | Precise
Scalable mRNA production from milligrams to grams, with personalized process design for sequence optimization, cap selection, and nucleotide modifications, all in one service.
GMP Plasmid Production
High Quality | Scalable | Regulatory-compliant
Our plasmid production services span Non-GMP, GMP-Like, and GMP-Grade levels, with specialized options for linearized plasmids.
GMP Viral Vector Manufacturing
Scalable | High Yield | Quality-driven
Advanced platforms for AAV, adenovirus, lentivirus, and retrovirus production, with strict adherence to GMP guidelines and robust quality control.
AI-Driven Gene Editing and Therapy
Innovative | Precision | Transformative
AI-powered one-click design for customized CRISPR gene editing strategy development.
AI-Antibody Engineering Fusion
Next-Generation | Targeted | Efficient
AI and ML algorithms accelerate antibody screening and predict new structures, unlocking unprecedented possibilities in antibody engineering.
AI-Driven Enzyme Engineering
Smart | Efficient | Tailored
High-throughput enzyme activity testing with proprietary datasets and deep learning models for standardized and precise enzyme engineering design.
AI-Enhanced Small Molecule Screening
Predictive | Efficient | Insightful
Leverage AI to uncover hidden high-potential small molecules, prioritize leads intelligently, and reduce costly trial-and-error in early drug discovery.
AI-Driven Protein Degrader Drug Development
Innovative | Targeted | Accelerated
Use AI-guided design to optimize protein degraders, addressing design complexity and enhancing efficacy while shortening development timelines.
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
BRCA2 is a human tumor suppressor gene, found in all humans; its protein, also called by the synonym breast cancer type 2 susceptibility protein, is responsible for repairing DNA.
Genomic instability is at the heart of aging, cancer and other diseases. Not only proteins involved in DNA replication or the DNA damage response that are important for maintaining the integrity of the genome. From yeastto higher eukaryotes, mutations in pre-mRNA splicing and in the biogenesis and export of messenger ribonucleo protein (mRNP) also induce DNA damage and genome instability. This instability is frequently arised from R-loops. R-loop is a three-stranded nucleic acid structure, composed of a DNA: RNA hybrid and the associated non-template single-stranded DNA, is formed by DNA-RNA hybrids and a displaced single-stranded DNA. The human TREX-2 complex, is involved in mRNP biogenesis and export, prevents genome instability. In cells depleted of the TREX-2 subunits PCID2, GANP and DSS1, γ-H2AX (Ser-139 phosphorylated histone H2AX) and 53BP1 are determined accumulated. The BRCA2 repair factor, which binds to DSS1, also associates with PCID2 in the cell. In TREX-2-depleted cells can’t detect R-loops, but did detect the accumulation of R-loops in BRCA2-depleted cells, indicating that loops are frequently formed in cells and that BRCA2 is required for their processing. This link between BRCA2 and RNA-mediated genome instability suggests that R-loops may be the main source of replication stress and cancer-associated instability.
Bhatia, V., et al. proposed a model to explain the role of BRCA2 preventing R-loops as a source of genome instability. In the absence of TREX-2, other RNA-binding factors help to prevent R-loop accumulation to a level detectable in the conditions tested. Most likely that TREX-2 helps recruit BRCA2 to the proximity of transcribed regions, where BRCA2 binds to the branched structure formed by the displaced ssDNA and the DNA-RNA hybrids of naturally formed R-loops (Fig. 1a). Such a structure may mimic the replicative intermediate to which BRCA2 is believed to bind in vivo. In replicating chromatin, because BRCA2 and BRCA1 work in the Fanconi anaemia pathway, which removes crosslinks and replication-blocking lesions, RFs encountering an R-loop could target the action of BRCA2, BRCA1 and possibly other Fanconi anaemia proteins to prevent fork collapse and reversal, probably impeding R-loop extension, and could promote restarting of the replication fork and dissolution of the R-loop (Fig. 1b). Thus, TREX-2 couldfunction at co-transcriptional R-loopsncountering RFs by regulating the stability and/or recruitment of BRCA2 to the ssDNA substrates generated at the sites of collisions.
Fig. 1. Model to explain the role of BRCA2 preventing R-loops as a source of genome instability. (Bhatia, V., et al. (2014).)
Furthemore BRCA2 exerts its tumor suppressive function in the cell nucleus through its role in the repair of DNA breaks by homologous recombination. ATM is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks. It phosphorylates several key proteins that initiate activation of the DNA damage repair or apoptosis. DNA double-strand damages also induce the activation of Fanconi anemia core complex. The FA proteins FANC-A, B, C, E, F, G and L (Fanconi anaemia complementation group) assemble in a nuclear complex required for activation through monoubiquitination of FANCD2 and FANCI in response to DNA damage. FANCL provides the monoubiquitin E3 ligase function for both FANCI and FANCD2. FANCD2’s activite indicate the activite of FA pathway. After DNA damage, ATM and ATR are required for FANCD2 phosphorylation. ATM also phosphorylated CHEK2, the activated Chk2 kinase can act as a signal transducer and phosphorylate a variety of substrates, including the Cdc25 phosphatases, p53, PML, E2F-1, and BRCA1. Ubiquinated FANCD2 complexes with BRCA1 and RAD51 in S-phase-specific nuclear foci. Toshiyasu, et al. suggested that FANCD2/BRCA1 complexes and FANCD2/RAD51 complexes participate in an S-phase-specific cellular process, such as DNA repair by homologous recombination.
The PALB2 protein acts as a hub, bringing together BRCA1, BRCA2 and RAD51 at the site where the DNA double strand breaks, and also binds to RAD51C, a member of the RAD51 paralog complex RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2). The BCDX2 complex is responsible for RAD51 recruitment or stabilization at damage sites. RAD51 plays a key role in DNA homologous recombinational repair during double strand break. BRCA2 controls the accumulation of the RAD51 recombinase enzyme at sites of DNA breakage in the nucleus, nucleates RAD51 filament formation at single-strand-double-strand DNA junctions, and promotes RAD51 binding on ssDNA whilst inhibiting dsDNA binding. A nuclear export signal (NES) in BRCA2 is masked by its interaction with the small (70 amino acids (aa)), acidic protein DSS1. BRCA2D2723H point mutations impairing BRCA2-DSS1 binding render BRCA2 cytoplasmic. In turn, cytoplasmic mis-localization of mutant BRCA2 inhibits the nuclear retention of RAD51, by exposing a similar NES in RAD51 usually obscured by the BRCA2-RAD51 interaction.
Fig 2. Recombinational repair of DNA double-strand damage - some key steps. (By Chaya5260 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons).
References:
Contact us today for a free consultation with the scientific team and discover how Creative Biogene can be a valuable resource and partner for your organization.
Inquiry
Copyright © Creative Biogene. All rights reserved.