Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Premade Virus Particles
Ready-to-Use | High Titer | Versatile Applications
Premade AAV, adenovirus, lentivirus particles, safe, stable, in stock.
Virus-Like Particles (VLPs)
Stable | Scalable | Customizable
Advanced VLPs for vaccine development (Chikungunya, Dengue, SARS-CoV-2), gene therapy (AAV1 & AAV9), and drug screening (SSTR2, CCR5).
Oligonucleotide Products
Precise | High Yield | Tailored Solutions
Accelerate your research with cost-effective LncRNA qPCR Array Technology.
RNA Interference Products
Targeted | Potent | High Specificity
Human Druggable Genome siRNA Library enables efficient drug target screening.
Recombinant Drug Target Proteins
Authentic | Versatile | Accelerated
Providing functional, high-purity recombinant proteins—including membrane proteins and nanodiscs—to overcome bottlenecks in drug screening and target validation.
Clones
Validated | Reliable | Comprehensive Collection
Ready-to-use clones for streamlined research and development.
Kits
Complete | Convenient | High Sensitivity
Chromogenic LAL Endotoxin Assay Kit ensures precise, FDA-compliant endotoxin quantification for biosafety testing.
Enzymes
Purified | Stable | Efficient
Powerful Tn5 Transposase for DNA insertion and random library construction.
Aptamers
Highly Specific | Robust | Versatile
Aptamers for key proteins like ACVR1A, Akt, EGFR, and VEGFR.
Adjuvants
Enhancing | Synergistic | Effective
Enhance immune responses with high-purity, potent CpG ODNs.
Laboratory Equipment
Innovative | Reliable | High-Precision
Effortlessly streamline DNA extraction with CB™ Magnetic-Nanoparticle Systems.
Stable Cell Line Generation
Reliable | Scalable | Customizable
Fast proposals, regular updates, and detailed reports; strict quality control, and contamination-free cells; knockout results in 4-6 weeks.
Target-based Drug Discovery Service
Innovative | Comprehensive | Efficient
Target identification, validation, and screening for drug discovery and therapeutic development.
Custom Viral Service
Versatile | High-Yield | Safe
Unbeatable pricing, fully customizable viral packaging services (covering 30,000+ human genes, 200+ mammals, 50+ protein tags).
Custom Antibody Service
Precise | Flexible | Efficient
End-to-end antibody development support, from target to validation, enabling clients to rapidly obtain application-ready antibodies.
Antibody-Drug Conjugation Service
Integrated | Controlled | Translational
Comprehensive solutions covering design, development, and validation to ensure conjugated drugs with consistent quality and clinical potential.
Protein Degrader Service
Efficient | High-Precision | Advanced Therapeutics
Harness the power of protein degraders for precise protein degradation, expanding druggable targets and enhancing therapeutic effectiveness for cutting-edge drug discovery.
Nucleotides Service
Accurate | Flexible | High-Quality
Custom synthesis of oligonucleotides, primers, and probes for gene editing, PCR, and RNA studies.
Custom RNA Service
Custom RNA ServicePrecise | Flexible | GMP-ReadyCustom
RNA design, synthesis, and manufacturing—covering mRNA, saRNA, circRNA, and RNAi. Fast turnaround, rigorous QC, and seamless transition from research to GMP production.
Custom Libraries Construction Service
Comprehensive | High-throughput | Accurate
Custom cDNA, genomic, and mutagenesis libraries for drug discovery, screening, and functional genomics.
Gene Editing Services
Precise | Efficient | Targeted
Gene editing solutions for gene editing, knockouts, knock-ins, and customized genetic modifications. Integrated multi-platform solutions for one-stop CRISPR sgRNA library synthesis and gene screening services
Microbe Genome Editing Service
Precise | Scalable | Customizable
Enhance microbial productivity with advanced genome editing using Rec-mediated recombination and CRISPR/Cas9 technologies.
Biosafety Testing Service
Reliable | Comprehensive | Regulated
Complete biosafety testing solutions for gene therapy, viral vectors, and biologics development.
Plant Genetic Modification Service
Advanced | Sustainable | Tailored
Genetic modification for crop improvement, biotechnology, and plant-based research solutions.
Plant-based Protein Production Service
Efficient | Scalable | Customizable
Plant-based protein expression systems for biopharmaceuticals, enzyme production, and research.
Aptamers Service
Innovative | Fast | Cost-Effective
Revolutionizing drug delivery and diagnostic development with next-generation high-throughput aptamer selection and synthesis technologies.
CGT Biosafety Testing
Comprehensive | Accurate | Regulatory-compliant
Internationally certified evaluation system for biologics, gene therapies, nucleic acid drugs, and vaccines.
Pandemic Detection Solutions
Rapid | Precise | Scalable
Balancing accuracy, accessibility, affordability, and rapid detection to safeguard public health and strengthen global response to infectious diseases.
cGMP Cell Line Development
Reliable | Scalable | Industry-leading
Stable expression over 15 generations with rapid cell line development in just 3 months.
Supports adherent and suspension cell lines, offering MCB, WCB, and PCB establishment.
GMP mRNA Production
Efficient | Scalable | Precise
Scalable mRNA production from milligrams to grams, with personalized process design for sequence optimization, cap selection, and nucleotide modifications, all in one service.
GMP Plasmid Production
High Quality | Scalable | Regulatory-compliant
Our plasmid production services span Non-GMP, GMP-Like, and GMP-Grade levels, with specialized options for linearized plasmids.
GMP Viral Vector Manufacturing
Scalable | High Yield | Quality-driven
Advanced platforms for AAV, adenovirus, lentivirus, and retrovirus production, with strict adherence to GMP guidelines and robust quality control.
AI-Driven Gene Editing and Therapy
Innovative | Precision | Transformative
AI-powered one-click design for customized CRISPR gene editing strategy development.
AI-Antibody Engineering Fusion
Next-Generation | Targeted | Efficient
AI and ML algorithms accelerate antibody screening and predict new structures, unlocking unprecedented possibilities in antibody engineering.
AI-Driven Enzyme Engineering
Smart | Efficient | Tailored
High-throughput enzyme activity testing with proprietary datasets and deep learning models for standardized and precise enzyme engineering design.
AI-Enhanced Small Molecule Screening
Predictive | Efficient | Insightful
Leverage AI to uncover hidden high-potential small molecules, prioritize leads intelligently, and reduce costly trial-and-error in early drug discovery.
AI-Driven Protein Degrader Drug Development
Innovative | Targeted | Accelerated
Use AI-guided design to optimize protein degraders, addressing design complexity and enhancing efficacy while shortening development timelines.
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
BCLAF1 was originally identified as a protein that interacts with anti-apoptotic members of the Bcl2 family. Although linked to (and named for its) interaction with BCL2 family members, BCLAF1 does not share structural similarities with these proteins. The presence of an arginine-serine (RS)-rich region near the N-terminus is the most prominent feature of the BCLAF1 open reading frame. Proteins containing the RS domain are typically associated with biogenesis and processing events of the pre-mRNA, such as splicing of the pre-mRNA.
BCLAF1 as a component of ribonucleoprotein (RNP) complexes
Eukaryotic conversion of pre-mRNA into mature mRNA requires the careful coordination of various post-transcriptional events, such as pre-mRNA 5’ capping, splicing, polyadenylation, and mRNA export from the nucleus to the cytoplasm. The step-by-step completion of each stage consists of a dedicated library of molecular factors that are subsequently recruited to the RNA substrate. These factors interact with RNA in RNP complexes that are initially formed during transcription. The protein composition of RNPs is remodeled during each phase of its existence in a dynamic fashion in order to dictate the fate of the contained RNA molecule. Study that examined the composition of human mRNPs using LC-MS/MS discovered the presence of BCLAF1 among newly identified mRNP proteins. The association of BCLAF1 with mRNPs occurred independently of splicing, but was found to be dependent on the presence of CBP80/CBP20, proteins that form the 5’-m7G cap binding complex. A subsequent study identified BCLAF1 in a complex that mediated cyclin D1 message stability together with SNIP1, SkIP, TAP150, and Pinin. SNIP1 was found to be required for the recruitment of the RNA processing factor U2AF65 to cyclin D1 transcripts. Studies also found that BCLAF1 co-precipitates with hnRNP A1, an RNP protein that is bound to cellular RNAs from transcription to translation. Using a prototypical substrate for measuring alternative pre-mRNA splicing, discovered that BCLAF1-deficient fibroblasts have altered levels of spliced transcripts derived from adenovirus E1A pre-mRNA compared to wild-type cells. Although BCLAF1 is bound to general splicing factor U2AF65 in both the absence and presence of DNA damage, only in the presence of DNA damage it associated with phosphorylated BRCA1. These results indicate that the interaction between BCLAF1 and phosphorylated BRCA1 occurs in the DNA damage response and resulted in recruitment of splicing factor U2AF65 to the HPV16 DNA.
Fig. 1. BCLAF1 as a component of ribonucleoprotein (RNP) complexes. (Nilsson K et al.International Journal of Molecular Sciences. 2018.).
BCLAF1 is an important NF-κB signaling transducer and C/EBPβ regulator
BCLAF1 responds to NF-κB activation by upregulation. BCLAF1 contains a putative NF-κB-binding element within its promoter. Both ChIP and reporter assays indicate that NF-κB binds to this region and activates BCLAF1transcription. Kong et al. have also demonstrated that RelA (p65) binds to the BCLAF1 promoter. However, BCLAF1 upregulation by NF-κB may require its activity to reach a certain threshold. Compared with severe and acute DNA damage treatment, mild DNA damage induces senescence. NF-κB activation is low on day 3 of drug treatment, and a relatively full NF-κB activation was achieved on day 7 as indicated by efficient p65 nuclear translocation and dramatic p65 upregulation. Thus, NF-κB signaling during DNA damage-induced senescence appears to be a gradual process and subject to further amplification through upregulation. As reported, Nemo can transmit DDR to NF-κB activation; however, it did not mediate NF-κB upregulation.
Recent studies have linked BCLAF1 to DDR. Lee et al. reported that BCLAF1 interacted with γH2AX and may regulate the Ku70/DNA-PKcs complex in response to DNA damage. Savage et al. demonstrated that BCLAF1 complexes with BRCA1 and influences the radio-sensitivity of cells. Shao et al. have demonstrated that BCLAF1 is involved in persistent and mild DNA damage-induced senescence downstream of NF-κB activation. Depending on the extent of DNA damage, BCLAF1 probably reacts differently. In the acute DNA damage response, BCLAF1 may be recruited to DNA damage foci and facilitates DNA repair. However, under chronic DNA damage conditions, BCLAF1 expression is upregulated in response to NF-κB activation and subsequently amplifies NF-κB downstream signaling to induce cellular senescence.
References:
Contact us today for a free consultation with the scientific team and discover how Creative Biogene can be a valuable resource and partner for your organization.
Inquiry
Copyright © Creative Biogene. All rights reserved.