Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Premade Virus Particles
Ready-to-Use | High Titer | Versatile Applications
Premade AAV, adenovirus, lentivirus particles, safe, stable, in stock.
Virus-Like Particles (VLPs)
Stable | Scalable | Customizable
Advanced VLPs for vaccine development (Chikungunya, Dengue, SARS-CoV-2), gene therapy (AAV1 & AAV9), and drug screening (SSTR2, CCR5).
Oligonucleotide Products
Precise | High Yield | Tailored Solutions
Accelerate your research with cost-effective LncRNA qPCR Array Technology.
RNA Interference Products
Targeted | Potent | High Specificity
Human Druggable Genome siRNA Library enables efficient drug target screening.
Recombinant Drug Target Proteins
Authentic | Versatile | Accelerated
Providing functional, high-purity recombinant proteins—including membrane proteins and nanodiscs—to overcome bottlenecks in drug screening and target validation.
Clones
Validated | Reliable | Comprehensive Collection
Ready-to-use clones for streamlined research and development.
Kits
Complete | Convenient | High Sensitivity
Chromogenic LAL Endotoxin Assay Kit ensures precise, FDA-compliant endotoxin quantification for biosafety testing.
Enzymes
Purified | Stable | Efficient
Powerful Tn5 Transposase for DNA insertion and random library construction.
Aptamers
Highly Specific | Robust | Versatile
Aptamers for key proteins like ACVR1A, Akt, EGFR, and VEGFR.
Adjuvants
Enhancing | Synergistic | Effective
Enhance immune responses with high-purity, potent CpG ODNs.
Laboratory Equipment
Innovative | Reliable | High-Precision
Effortlessly streamline DNA extraction with CB™ Magnetic-Nanoparticle Systems.
Stable Cell Line Generation
Reliable | Scalable | Customizable
Fast proposals, regular updates, and detailed reports; strict quality control, and contamination-free cells; knockout results in 4-6 weeks.
Target-based Drug Discovery Service
Innovative | Comprehensive | Efficient
Target identification, validation, and screening for drug discovery and therapeutic development.
Custom Viral Service
Versatile | High-Yield | Safe
Unbeatable pricing, fully customizable viral packaging services (covering 30,000+ human genes, 200+ mammals, 50+ protein tags).
Custom Antibody Service
Precise | Flexible | Efficient
End-to-end antibody development support, from target to validation, enabling clients to rapidly obtain application-ready antibodies.
Antibody-Drug Conjugation Service
Integrated | Controlled | Translational
Comprehensive solutions covering design, development, and validation to ensure conjugated drugs with consistent quality and clinical potential.
Protein Degrader Service
Efficient | High-Precision | Advanced Therapeutics
Harness the power of protein degraders for precise protein degradation, expanding druggable targets and enhancing therapeutic effectiveness for cutting-edge drug discovery.
Nucleotides Service
Accurate | Flexible | High-Quality
Custom synthesis of oligonucleotides, primers, and probes for gene editing, PCR, and RNA studies.
Custom RNA Service
Custom RNA ServicePrecise | Flexible | GMP-ReadyCustom
RNA design, synthesis, and manufacturing—covering mRNA, saRNA, circRNA, and RNAi. Fast turnaround, rigorous QC, and seamless transition from research to GMP production.
Custom Libraries Construction Service
Comprehensive | High-throughput | Accurate
Custom cDNA, genomic, and mutagenesis libraries for drug discovery, screening, and functional genomics.
Gene Editing Services
Precise | Efficient | Targeted
Gene editing solutions for gene editing, knockouts, knock-ins, and customized genetic modifications. Integrated multi-platform solutions for one-stop CRISPR sgRNA library synthesis and gene screening services
Microbe Genome Editing Service
Precise | Scalable | Customizable
Enhance microbial productivity with advanced genome editing using Rec-mediated recombination and CRISPR/Cas9 technologies.
Biosafety Testing Service
Reliable | Comprehensive | Regulated
Complete biosafety testing solutions for gene therapy, viral vectors, and biologics development.
Plant Genetic Modification Service
Advanced | Sustainable | Tailored
Genetic modification for crop improvement, biotechnology, and plant-based research solutions.
Plant-based Protein Production Service
Efficient | Scalable | Customizable
Plant-based protein expression systems for biopharmaceuticals, enzyme production, and research.
Aptamers Service
Innovative | Fast | Cost-Effective
Revolutionizing drug delivery and diagnostic development with next-generation high-throughput aptamer selection and synthesis technologies.
CGT Biosafety Testing
Comprehensive | Accurate | Regulatory-compliant
Internationally certified evaluation system for biologics, gene therapies, nucleic acid drugs, and vaccines.
Pandemic Detection Solutions
Rapid | Precise | Scalable
Balancing accuracy, accessibility, affordability, and rapid detection to safeguard public health and strengthen global response to infectious diseases.
cGMP Cell Line Development
Reliable | Scalable | Industry-leading
Stable expression over 15 generations with rapid cell line development in just 3 months.
Supports adherent and suspension cell lines, offering MCB, WCB, and PCB establishment.
GMP mRNA Production
Efficient | Scalable | Precise
Scalable mRNA production from milligrams to grams, with personalized process design for sequence optimization, cap selection, and nucleotide modifications, all in one service.
GMP Plasmid Production
High Quality | Scalable | Regulatory-compliant
Our plasmid production services span Non-GMP, GMP-Like, and GMP-Grade levels, with specialized options for linearized plasmids.
GMP Viral Vector Manufacturing
Scalable | High Yield | Quality-driven
Advanced platforms for AAV, adenovirus, lentivirus, and retrovirus production, with strict adherence to GMP guidelines and robust quality control.
AI-Driven Gene Editing and Therapy
Innovative | Precision | Transformative
AI-powered one-click design for customized CRISPR gene editing strategy development.
AI-Antibody Engineering Fusion
Next-Generation | Targeted | Efficient
AI and ML algorithms accelerate antibody screening and predict new structures, unlocking unprecedented possibilities in antibody engineering.
AI-Driven Enzyme Engineering
Smart | Efficient | Tailored
High-throughput enzyme activity testing with proprietary datasets and deep learning models for standardized and precise enzyme engineering design.
AI-Enhanced Small Molecule Screening
Predictive | Efficient | Insightful
Leverage AI to uncover hidden high-potential small molecules, prioritize leads intelligently, and reduce costly trial-and-error in early drug discovery.
AI-Driven Protein Degrader Drug Development
Innovative | Targeted | Accelerated
Use AI-guided design to optimize protein degraders, addressing design complexity and enhancing efficacy while shortening development timelines.
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
Apoptosis is a physiological process of programmed cell death that maintains tissue function and homeostasis. Apoptosis is regulated by two major pathways: the extrinsic/death receptor pathway and the intrinsic/mitochondrial pathway. The exogenous apoptotic pathway is triggered by ligand-receptor interactions between tumor necrosis factor (TNF) family members and the corresponding transmembrane death receptor. After ligand binding, the adaptor protein is recruited and binds to the death receptor, resulting in activation of downstream caspase cascades and ultimately cell death. The intrinsic apoptosis pathway is mediated by the B cell lymphoma 2 (BCL2) family of proteins.
The BCL2 family, whose namesake was initially identified due to chromosomal translocations that activated BCL2 gene expression, has been identified through their composition of a series of shared BCL2 homology (BH) motifs (BH1, BH2, BH3, and BH4). Importantly, only the BH3 motif, which mediates protein-protein interactions between family members, is strictly conserved across all family members. These proteins are divided into three major subfamilies based on their function and structure: the anti-apoptotic BCL2 proteins, the pro-apoptotic effectors, and the pro-apoptotic BH3 only proteins. The BH3 proteins can be classified into direct activators and sensitizers based on their binding ability to other BCL2 family members. The direct activator BH3 only proteins can interact with both the anti-apoptotic BCL2 proteins and the effectors BAK/BAX while the sensitizer BH3 only proteins preferentially bind to the anti-apoptotic BCL2 proteins and thereby indirectly activate BAK/BAX. Cell fate is determined by the balance between the pro-apoptotic cells and the activity of anti-apoptotic BCL-2 family members. At normal cellular homeostasis, anti-apoptotic members bind directly to the effector BAK/BAX to counteract their ability to induce apoptosis. However, only BH3 members are activated after cellular stress, such as by radiation or treatment with induced cellular stress by cytotoxic agents. These in turn directly activate BAK/BAX and/or neutralize the function of the anti-apoptotic BCL2 family members by competing for their binding with BAK/BAX. As a result, the effectors BAK/BAX oligomerize in the mitochondrial outer membrane and form pores. The resulting mitochondrial outer membrane permeabilization (MOMP) results in cytochrome c release, activation of downstream caspases, and finally cell death. In addition to their regulation of mitochondrial apoptosis, mediated by the crosstalk among BCL2 family members, BCL2 family proteins have also been shown to induce apoptosis via their regulation of Ca2+ signaling.
Fig. 1. BCL2 family mediated intrinsic apoptosis signaling. (Jia et al. Int. J. Mol. Sci. 2018).
A promising cancer therapeutic target
BCL2 antisense oligonucleotide downregulates the anti-apoptotic BCL2 family proteins by targeting the open reading frame of BCL2 gene leading to mRNA degradation. Interestingly, this antisense sequences have been reported to increase the efficiency, when used in combination with other drugs and radiation in mouse tumor models. Synergistic effects of Genasense and dacarbazine on melanoma treatment have been tested. However, it did not show a significant effect on patients with advanced melanoma. Peptide sequences mimicking BH3-only proteins, bind to BCL2 with a higher affinity than pro-apoptotic proteins, thus interfering with their interaction. The free pro-apoptotic proteins can then homodimerize and trigger apoptotic cascades. Peptides derived from the BH3 domain have been shown to inhibit BAX-BCL2 heterodimer formation in vitro. However, the use of such peptides is limited in scope due to their metabolic instability, degradation due to cellular proteases and poor cell permeability, and bioavailability. As reported, a peptide derived from Nur77, a nuclear receptor transfer from nucleus to mitochondria upon cell death stimuli was utilized. In a normal scenario, Nur77 binds to BCL2 at the flexible loop domain and induces conformational changes, converting it from antiapoptotic to proapoptotic protein.
There are many small molecule inhibitors disrupt the interaction between anti-apoptotic BCL-2 heterodimeric complexes and their pro-apoptotic partners BAK/BAX have been developed and investigated extensively. BAK / BAX inserts its BH3 domain into the hydrophobic groove of BCL2 formed by its BH1-4 domain. Therefore, BH3 mimicking SMI works by eliminating the BCL2 and BAK/BAX interactions. Gossypol is a natural phenolic compound found in cotton plants, it has been shown to inhibit apoptosis in mouse tumor models. AT101 is a synthetic derivative of Gossypol that binds to BCL2, BCL-xL, and MCL1. Although, AT101 has been demonstrated to synergistically enhance radiation induced apoptosis, its low target binding affinity and toxic side effects have led to its failure to be developed as a single agent in clinical trials. ABT737 was discovered using high throughput nuclear magnetic resonance (NMR) screening and exhibited high binding affinity for BCL2, BCL-xL and BCL-W. It also showed effect on lymphoma, small-cell lung cancer carcinoma cell lines, primary patient-derived cells, and in tumor xenografts. However, it cannot be orally administered. Although these inhibitors have shown low IC50 values and good BCL2 binding affinities, one of the disadvantages of these inhibitors is that they are pan active. Platelets require BCL-xL for their survival. Hence such pan active agents will affect the platelet count of the body. Owing to high degree of homology between BCL2 family of anti-apoptotic proteins, it is challenging to design molecules that specifically inhibit any one among them.
Fig. 2. Schematic showing various strategies to target BCL2. (G. Radha, Cancer. 2017).
References:
Contact us today for a free consultation with the scientific team and discover how Creative Biogene can be a valuable resource and partner for your organization.
Inquiry
Copyright © Creative Biogene. All rights reserved.