Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Premade Virus Particles
Ready-to-Use | High Titer | Versatile Applications
Premade AAV, adenovirus, lentivirus particles, safe, stable, in stock.
Virus-Like Particles (VLPs)
Stable | Scalable | Customizable
Advanced VLPs for vaccine development (Chikungunya, Dengue, SARS-CoV-2), gene therapy (AAV1 & AAV9), and drug screening (SSTR2, CCR5).
Oligonucleotide Products
Precise | High Yield | Tailored Solutions
Accelerate your research with cost-effective LncRNA qPCR Array Technology.
RNA Interference Products
Targeted | Potent | High Specificity
Human Druggable Genome siRNA Library enables efficient drug target screening.
Recombinant Drug Target Proteins
Authentic | Versatile | Accelerated
Providing functional, high-purity recombinant proteins—including membrane proteins and nanodiscs—to overcome bottlenecks in drug screening and target validation.
Clones
Validated | Reliable | Comprehensive Collection
Ready-to-use clones for streamlined research and development.
Kits
Complete | Convenient | High Sensitivity
Chromogenic LAL Endotoxin Assay Kit ensures precise, FDA-compliant endotoxin quantification for biosafety testing.
Enzymes
Purified | Stable | Efficient
Powerful Tn5 Transposase for DNA insertion and random library construction.
Aptamers
Highly Specific | Robust | Versatile
Aptamers for key proteins like ACVR1A, Akt, EGFR, and VEGFR.
Adjuvants
Enhancing | Synergistic | Effective
Enhance immune responses with high-purity, potent CpG ODNs.
Laboratory Equipment
Innovative | Reliable | High-Precision
Effortlessly streamline DNA extraction with CB™ Magnetic-Nanoparticle Systems.
Stable Cell Line Generation
Reliable | Scalable | Customizable
Fast proposals, regular updates, and detailed reports; strict quality control, and contamination-free cells; knockout results in 4-6 weeks.
Target-based Drug Discovery Service
Innovative | Comprehensive | Efficient
Target identification, validation, and screening for drug discovery and therapeutic development.
Custom Viral Service
Versatile | High-Yield | Safe
Unbeatable pricing, fully customizable viral packaging services (covering 30,000+ human genes, 200+ mammals, 50+ protein tags).
Custom Antibody Service
Precise | Flexible | Efficient
End-to-end antibody development support, from target to validation, enabling clients to rapidly obtain application-ready antibodies.
Antibody-Drug Conjugation Service
Integrated | Controlled | Translational
Comprehensive solutions covering design, development, and validation to ensure conjugated drugs with consistent quality and clinical potential.
Protein Degrader Service
Efficient | High-Precision | Advanced Therapeutics
Harness the power of protein degraders for precise protein degradation, expanding druggable targets and enhancing therapeutic effectiveness for cutting-edge drug discovery.
Nucleotides Service
Accurate | Flexible | High-Quality
Custom synthesis of oligonucleotides, primers, and probes for gene editing, PCR, and RNA studies.
Custom RNA Service
Custom RNA ServicePrecise | Flexible | GMP-ReadyCustom
RNA design, synthesis, and manufacturing—covering mRNA, saRNA, circRNA, and RNAi. Fast turnaround, rigorous QC, and seamless transition from research to GMP production.
Custom Libraries Construction Service
Comprehensive | High-throughput | Accurate
Custom cDNA, genomic, and mutagenesis libraries for drug discovery, screening, and functional genomics.
Gene Editing Services
Precise | Efficient | Targeted
Gene editing solutions for gene editing, knockouts, knock-ins, and customized genetic modifications. Integrated multi-platform solutions for one-stop CRISPR sgRNA library synthesis and gene screening services
Microbe Genome Editing Service
Precise | Scalable | Customizable
Enhance microbial productivity with advanced genome editing using Rec-mediated recombination and CRISPR/Cas9 technologies.
Biosafety Testing Service
Reliable | Comprehensive | Regulated
Complete biosafety testing solutions for gene therapy, viral vectors, and biologics development.
Plant Genetic Modification Service
Advanced | Sustainable | Tailored
Genetic modification for crop improvement, biotechnology, and plant-based research solutions.
Plant-based Protein Production Service
Efficient | Scalable | Customizable
Plant-based protein expression systems for biopharmaceuticals, enzyme production, and research.
Aptamers Service
Innovative | Fast | Cost-Effective
Revolutionizing drug delivery and diagnostic development with next-generation high-throughput aptamer selection and synthesis technologies.
CGT Biosafety Testing
Comprehensive | Accurate | Regulatory-compliant
Internationally certified evaluation system for biologics, gene therapies, nucleic acid drugs, and vaccines.
Pandemic Detection Solutions
Rapid | Precise | Scalable
Balancing accuracy, accessibility, affordability, and rapid detection to safeguard public health and strengthen global response to infectious diseases.
cGMP Cell Line Development
Reliable | Scalable | Industry-leading
Stable expression over 15 generations with rapid cell line development in just 3 months.
Supports adherent and suspension cell lines, offering MCB, WCB, and PCB establishment.
GMP mRNA Production
Efficient | Scalable | Precise
Scalable mRNA production from milligrams to grams, with personalized process design for sequence optimization, cap selection, and nucleotide modifications, all in one service.
GMP Plasmid Production
High Quality | Scalable | Regulatory-compliant
Our plasmid production services span Non-GMP, GMP-Like, and GMP-Grade levels, with specialized options for linearized plasmids.
GMP Viral Vector Manufacturing
Scalable | High Yield | Quality-driven
Advanced platforms for AAV, adenovirus, lentivirus, and retrovirus production, with strict adherence to GMP guidelines and robust quality control.
AI-Driven Gene Editing and Therapy
Innovative | Precision | Transformative
AI-powered one-click design for customized CRISPR gene editing strategy development.
AI-Antibody Engineering Fusion
Next-Generation | Targeted | Efficient
AI and ML algorithms accelerate antibody screening and predict new structures, unlocking unprecedented possibilities in antibody engineering.
AI-Driven Enzyme Engineering
Smart | Efficient | Tailored
High-throughput enzyme activity testing with proprietary datasets and deep learning models for standardized and precise enzyme engineering design.
AI-Enhanced Small Molecule Screening
Predictive | Efficient | Insightful
Leverage AI to uncover hidden high-potential small molecules, prioritize leads intelligently, and reduce costly trial-and-error in early drug discovery.
AI-Driven Protein Degrader Drug Development
Innovative | Targeted | Accelerated
Use AI-guided design to optimize protein degraders, addressing design complexity and enhancing efficacy while shortening development timelines.
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
Annexin A2 (ANXA2) is an important member of the annexin family and is a calcium ion-dependent phospholipid-binding protein. ANXA2 exists mainly in two forms: monomeric and heterotetramers. ANXA2 and its ligand p11 first form a heterodimer, and the two heterodimers combine to form a heterotetramer. By binding, the N-terminus of ANXA2 forms an α-helix containing many important hydrophilic amino acid residues, and one of the ANXA2 L2 Loop and the HIV helix can form a gap with the other ANXA2 HI helix. Heterodimers are closely related to the cell proliferation process. Heterotetramers are co-receptors of tissue plasminogen activator (t-PA) and plasminogen (PLG). It mediates t-PA-dependent plasmin activation and plasmin production, solubilizes fibrin and maintains vascular homeostasis. It also promotes the invasion of tumor cells. Studies have shown that heterotetramers are an important form of ANXA2 functioning.
Figure 1. Experimental model of inflammatory pathway regulation by the annexin A2-S100A10 heterotetramer. (Bharadwaj, et al. 2013).
ANXA2 protein molecules are mainly distributed in the nucleus, cytoplasm, cell membrane and extracellular fluid, and have calcium-dependent phospholipid binding properties. ANXA2 can exist as a free monomer in the cytoplasm, bind to the inner membrane of the cell, or attach to the outer surface of the plasma membrane. Annexin has a variety of biological functions that regulate cell function, including angiogenesis, cell proliferation, apoptosis, cell migration, invasion, and adhesion. Therefore, annexin also plays an important role in the development of many human tumors.
Distribution and Regulation of ANXA2 in Cells
Under conditions of thermal stimulation, thrombin stimulation, and hypoxia, ANXA2 in endothelial cells can be rapidly distributed from the cytoplasm to the cell membrane, a process that requires sufficient phosphorylation of p11 to participate. ANXA2 is mainly distributed on the cell membrane, so it is also involved in cell-cell interactions and cell adhesion.
Intracellular ANXA2 plays an important role in endocytosis, efflux, and membrane transport of cells. Wang et al. knocked out ANXA2 and found that cell division and proliferation were inhibited. It plays an important role in the production of lipid rafts and signal transduction through interaction with CD44. ANXA2 binds to a variety of ligands, including calcium, lipids, mRNA, and many intracellular and extracellular proteins, and differentiates gene expression modifications by regulating interactions with ligands. The study found that ANXA2 acts as a ligand for C1q in apoptotic cells, suggesting that ANXA2 is also closely related to apoptosis.
Relationship Between ANXA2 and Plasmin Activity
The fibrinolysis process mainly refers to the process of modification and degradation of fibrin-rich thrombus, and ANXA2 also plays an important role in the fibrinolysis process. tPA is synthesized by vascular endothelial cells and macrophages, which promote the conversion of plasminogen to active plasmin in the thrombus. ANXA2 is a calcium-binding protein that binds to acidic phospholipids and plays an important role in many cell regulation processes. Yamanaka et al. found that ANXA2 is an important thrombolytic receptor for tissue plasminogen activator tPA and is involved in the plasmin system.
Cell surface-expressed ANXA2 plays an important role in regulating the activity of plasminogen activator. Studies have shown that ANXA2 can shorten the distance between plasminogen and t-PA space so that tPA activates plasmin, which significantly improves the thrombolytic effect. Dai et al. found that ANXA2 dysfunction leads to loss of plasmin activity on the surface of human endothelial cells caused by hyperglycemia, and the addition of recombinant ANXA2 can restore the cell surface plasmin activity. Therefore, the decrease in plasmin activity caused by diabetes is related to the glycosylation of ANXA2, and ANXA2 can restore plasmin activity, suggesting that ANXA2 can be used for the treatment of impaired fibrinolytic activity caused by diabetes.
ANXA2 and Tumor
Different members of the annexin family have different effects on tumorigenesis. The main role of ANXA2 is in angiogenesis and infiltration and metastasis of tumor cells. ANXA2 is located in the cytoplasm, cell membrane, and cytoskeleton network and is involved in the movement of tumor cells.
ANXA2 is overexpressed in many cancers and can be associated with plasmin on the surface of tumors. It then mediates the degradation of the extracellular matrix and promotes angiogenesis, thereby promoting tumor growth. In gastric cancer, pancreatic cancer, colon cancer, liver cancer and brain cancer tissues, the expression of ANXA2 is on the rise. In prostate cancer, ANXA2 showed a decreasing trend. In addition, in metastatic breast cancer, the expression level of ANXA2 is higher than that of non-metastatic cancer tissues.
Sharma et al. also found ANXA2 overexpression in breast cancer tissues. In a xenograft model of breast cancer growth, the use of monoclonal antibodies against ANXA2 significantly inhibited the growth of tumor cells. Yang et al. found that ANXA2 has different degrees of improvement in renal cell carcinoma expression. Silencing ANXA2 gene revealed significant inhibition of cell invasion and metastasis. Zhang et al. used immunohistochemical staining to examine the expression of ANXA2 and S100A4 in urothelial carcinoma tissues, and the results showed that their expression was significantly up-regulated. It is suggested that bladder cancer can be predicted by detecting ANXA2 and S100A4 in the future. In addition, there are studies on ANXA2 in other cancers, and studies have shown that ANXA2 is closely related to the invasion and metastasis of cancer.
References:
Contact us today for a free consultation with the scientific team and discover how Creative Biogene can be a valuable resource and partner for your organization.
Inquiry
Copyright © Creative Biogene. All rights reserved.