Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Premade Virus Particles
Ready-to-Use | High Titer | Versatile Applications
Premade AAV, adenovirus, lentivirus particles, safe, stable, in stock.
Virus-Like Particles (VLPs)
Stable | Scalable | Customizable
Advanced VLPs for vaccine development (Chikungunya, Dengue, SARS-CoV-2), gene therapy (AAV1 & AAV9), and drug screening (SSTR2, CCR5).
Oligonucleotide Products
Precise | High Yield | Tailored Solutions
Accelerate your research with cost-effective LncRNA qPCR Array Technology.
RNA Interference Products
Targeted | Potent | High Specificity
Human Druggable Genome siRNA Library enables efficient drug target screening.
Recombinant Drug Target Proteins
Authentic | Versatile | Accelerated
Providing functional, high-purity recombinant proteins—including membrane proteins and nanodiscs—to overcome bottlenecks in drug screening and target validation.
Clones
Validated | Reliable | Comprehensive Collection
Ready-to-use clones for streamlined research and development.
Kits
Complete | Convenient | High Sensitivity
Chromogenic LAL Endotoxin Assay Kit ensures precise, FDA-compliant endotoxin quantification for biosafety testing.
Enzymes
Purified | Stable | Efficient
Powerful Tn5 Transposase for DNA insertion and random library construction.
Aptamers
Highly Specific | Robust | Versatile
Aptamers for key proteins like ACVR1A, Akt, EGFR, and VEGFR.
Adjuvants
Enhancing | Synergistic | Effective
Enhance immune responses with high-purity, potent CpG ODNs.
Laboratory Equipment
Innovative | Reliable | High-Precision
Effortlessly streamline DNA extraction with CB™ Magnetic-Nanoparticle Systems.
Stable Cell Line Generation
Reliable | Scalable | Customizable
Fast proposals, regular updates, and detailed reports; strict quality control, and contamination-free cells; knockout results in 4-6 weeks.
Target-based Drug Discovery Service
Innovative | Comprehensive | Efficient
Target identification, validation, and screening for drug discovery and therapeutic development.
Custom Viral Service
Versatile | High-Yield | Safe
Unbeatable pricing, fully customizable viral packaging services (covering 30,000+ human genes, 200+ mammals, 50+ protein tags).
Custom Antibody Service
Precise | Flexible | Efficient
End-to-end antibody development support, from target to validation, enabling clients to rapidly obtain application-ready antibodies.
Antibody-Drug Conjugation Service
Integrated | Controlled | Translational
Comprehensive solutions covering design, development, and validation to ensure conjugated drugs with consistent quality and clinical potential.
Protein Degrader Service
Efficient | High-Precision | Advanced Therapeutics
Harness the power of protein degraders for precise protein degradation, expanding druggable targets and enhancing therapeutic effectiveness for cutting-edge drug discovery.
Nucleotides Service
Accurate | Flexible | High-Quality
Custom synthesis of oligonucleotides, primers, and probes for gene editing, PCR, and RNA studies.
Custom RNA Service
Custom RNA ServicePrecise | Flexible | GMP-ReadyCustom
RNA design, synthesis, and manufacturing—covering mRNA, saRNA, circRNA, and RNAi. Fast turnaround, rigorous QC, and seamless transition from research to GMP production.
Custom Libraries Construction Service
Comprehensive | High-throughput | Accurate
Custom cDNA, genomic, and mutagenesis libraries for drug discovery, screening, and functional genomics.
Gene Editing Services
Precise | Efficient | Targeted
Gene editing solutions for gene editing, knockouts, knock-ins, and customized genetic modifications. Integrated multi-platform solutions for one-stop CRISPR sgRNA library synthesis and gene screening services
Microbe Genome Editing Service
Precise | Scalable | Customizable
Enhance microbial productivity with advanced genome editing using Rec-mediated recombination and CRISPR/Cas9 technologies.
Biosafety Testing Service
Reliable | Comprehensive | Regulated
Complete biosafety testing solutions for gene therapy, viral vectors, and biologics development.
Plant Genetic Modification Service
Advanced | Sustainable | Tailored
Genetic modification for crop improvement, biotechnology, and plant-based research solutions.
Plant-based Protein Production Service
Efficient | Scalable | Customizable
Plant-based protein expression systems for biopharmaceuticals, enzyme production, and research.
Aptamers Service
Innovative | Fast | Cost-Effective
Revolutionizing drug delivery and diagnostic development with next-generation high-throughput aptamer selection and synthesis technologies.
CGT Biosafety Testing
Comprehensive | Accurate | Regulatory-compliant
Internationally certified evaluation system for biologics, gene therapies, nucleic acid drugs, and vaccines.
Pandemic Detection Solutions
Rapid | Precise | Scalable
Balancing accuracy, accessibility, affordability, and rapid detection to safeguard public health and strengthen global response to infectious diseases.
cGMP Cell Line Development
Reliable | Scalable | Industry-leading
Stable expression over 15 generations with rapid cell line development in just 3 months.
Supports adherent and suspension cell lines, offering MCB, WCB, and PCB establishment.
GMP mRNA Production
Efficient | Scalable | Precise
Scalable mRNA production from milligrams to grams, with personalized process design for sequence optimization, cap selection, and nucleotide modifications, all in one service.
GMP Plasmid Production
High Quality | Scalable | Regulatory-compliant
Our plasmid production services span Non-GMP, GMP-Like, and GMP-Grade levels, with specialized options for linearized plasmids.
GMP Viral Vector Manufacturing
Scalable | High Yield | Quality-driven
Advanced platforms for AAV, adenovirus, lentivirus, and retrovirus production, with strict adherence to GMP guidelines and robust quality control.
AI-Driven Gene Editing and Therapy
Innovative | Precision | Transformative
AI-powered one-click design for customized CRISPR gene editing strategy development.
AI-Antibody Engineering Fusion
Next-Generation | Targeted | Efficient
AI and ML algorithms accelerate antibody screening and predict new structures, unlocking unprecedented possibilities in antibody engineering.
AI-Driven Enzyme Engineering
Smart | Efficient | Tailored
High-throughput enzyme activity testing with proprietary datasets and deep learning models for standardized and precise enzyme engineering design.
AI-Enhanced Small Molecule Screening
Predictive | Efficient | Insightful
Leverage AI to uncover hidden high-potential small molecules, prioritize leads intelligently, and reduce costly trial-and-error in early drug discovery.
AI-Driven Protein Degrader Drug Development
Innovative | Targeted | Accelerated
Use AI-guided design to optimize protein degraders, addressing design complexity and enhancing efficacy while shortening development timelines.
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
ABCE1 is the only member of the E subfamily of the ABC superfamily. ABCE1 is mainly found in cytoplasm and mitochondria and is widely distributed in archaea and eukaryotes, originally found in mammals. In the human body, its genes are widely expressed in various organs: high expression in brain, kidney and prostate, low expression in liver, spleen, colon, heart muscle and skeletal muscle tissue, but not in spinal cord and bone.
ABCE1 has two isoforms. It consists of two ATP-binding regions at the C-terminus and an N-terminal Fe-S cluster. The former is a protein folding region (NBDs) capable of binding nucleotides. Both NBDs have a typical bilobular ABC-type ATPase region and an ATP-binding region ABCE1. The ATP-binding region contains WalkerA, WalkerB, aromatic amino acid ring (Tyr-loop), glutamate ring (Gln-loop), histamine, His-loop, the transporter signal motif (signature C), and the last four motifs are hallmarks of the ABC superfamily.
The highly conserved N-terminal region rich in cysteine is the structure of ABCE1 unique to the ABC superfamily. Both Fe-S clusters are coordinated with four cysteines, respectively. The cysteine residue acts by forming two diamagnetic Fe - S clusters with Fe ions. Seven of the eight cysteine residues are indispensable for Fe-S cluster function, and their variation will result in cell death.
Figure 1. Rli1/ABCE1 recycles terminating ribosomes and controls translation reinitiation in 30 UTRs in vivo. (Young, D. J., et al. 2015)
Protein Synthesis of ABCE1
ABCE1 is primarily involved in the initiation, termination, and ribosome circulation of translation. Protein translation begins with the 60S ribosomal subunit and the 40S ribosomal sub-based on the initiation factor to form a biologically active 80S ribosome. The initiation factor eIF plays an important role in the initiation. The study found that ABCE1 promotes the function of eIF3 by an unknown mechanism, and found that ABCE1 binds to the initiation factors eIF2 and eIF5 to form part of PIC, which is required for yeast mRNA translation.
Another study by Beznosková et al. shows that ABCE1 can promote the termination of the translation process without relying on ATP, but the specific mechanism remains unclear. However, lowering the ABCE1 level and increasing the yeast termination password read-through phenomenon is consistent with the proposal that ABCE1 has a termination password recognition function. Studies have shown that ABCE1 interacts with eRF1 to affect eRF1 termination codon recognition and peptidyl tRNA hydrolysis. Preis et al. found that ABCE1 binds to eRF1-loaded ribosomes to promote peptide release and dissociation of ribosomal subunits.
ABCE1 has also been shown to promote ribosomal circulation in higher eukaryotes. When translation is terminated, pre-TC consisting of eukaryotic 80S ribosomes, P-position acyl tRNA, and eRF1 can be dissociated in a non-energy-dependent manner by binding to eIF3, eIF1, eIF1A, but requires a very narrow range of magnesium ion concentrations. However, ABCE1 promotes the dissociation of the complex into the 60S ribosomal subunit and the 40S subunit under a wide range of magnesium ion concentrations, thereby promoting ribosome circulation. However, ABCE1 can only be combined with pre-TC that has been bound by eRF1 /eRF3 or eRF1, since eIF3, eIF1, and eIF1A are required to dissociate mRNA and tRNA from the 40S subunit. Kashima et al. found in the genus Drosophila, when ribosomes encounter mRNAs lacking a stop codon, ABCE1 plays an important role in the mechanism of non-terminating mRNA decline.
ABCE1 and Disease
Studies in colon cancer have found that the ABCE1 gene-encoded polypeptide induces HLA-A2-restricted and tumor-reactive cytotoxic T lymphocyte production. This suggests that ABCE1 protein can be a specific immunotherapeutic target for HLA-A2-positive colon cancer patients. In the study of malignant melanoma, the expression of ABCE1 gene in malignant melanoma cells was significantly increased compared with melanocytes. In human hepatoma cells, studies have also shown that ABCE1 is significantly increased, and its gene level is regulated by microRNA (miRNA), namely miR-203. Therefore, the application of miRNA therapy can play an anti-tumor effect.
Huang et al. detected the expression of ABCE1 in esophageal cancer tissues by contrast and introduced the siRNA green fluorescent protein expression vector carrying ABCE1 into esophageal cancer Eca109 cells. The study found that the expression of ABCE1 in esophageal cancer tissues was significantly higher than that in adjacent tissues. And the lower the differentiation level, the negative expression of ABCE1 expression level and tissue differentiation. ABCE1 may affect the development of esophageal cancer through regulation of the 2-5A/RNase L pathway.
In the study, ABCE1-siRNA was constructed and transfected into 95-D/NCL-H446 cells. It was found that the transfected tumor cells had decreased proliferation and apoptotic rate, and the expression of E-cadherin increased and the infiltration decreased. Huang et al. transferred ABCE1-siRNA into the small cell lung cancer line NCL-H446, which decreased proliferation, invasion, and migration. Gong research found that after inhibiting the expression of ABCE1 in large cell lung cancer H460 cells, the cell proliferation was significantly decreased, the apoptotic rate was increased, and the RNase L protein was significantly increased. Kara et al. confirmed that down-regulation of ABCE1 increased the sensitivity of A549 lung cancer cells to chemotherapy drugs.
References:
Contact us today for a free consultation with the scientific team and discover how Creative Biogene can be a valuable resource and partner for your organization.
Inquiry
Copyright © Creative Biogene. All rights reserved.