Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Premade Virus Particles
Ready-to-Use | High Titer | Versatile Applications
Premade AAV, adenovirus, lentivirus particles, safe, stable, in stock.
Virus-Like Particles (VLPs)
Stable | Scalable | Customizable
Advanced VLPs for vaccine development (Chikungunya, Dengue, SARS-CoV-2), gene therapy (AAV1 & AAV9), and drug screening (SSTR2, CCR5).
Oligonucleotide Products
Precise | High Yield | Tailored Solutions
Accelerate your research with cost-effective LncRNA qPCR Array Technology.
RNA Interference Products
Targeted | Potent | High Specificity
Human Druggable Genome siRNA Library enables efficient drug target screening.
Recombinant Drug Target Proteins
Authentic | Versatile | Accelerated
Providing functional, high-purity recombinant proteins—including membrane proteins and nanodiscs—to overcome bottlenecks in drug screening and target validation.
Clones
Validated | Reliable | Comprehensive Collection
Ready-to-use clones for streamlined research and development.
Kits
Complete | Convenient | High Sensitivity
Chromogenic LAL Endotoxin Assay Kit ensures precise, FDA-compliant endotoxin quantification for biosafety testing.
Enzymes
Purified | Stable | Efficient
Powerful Tn5 Transposase for DNA insertion and random library construction.
Aptamers
Highly Specific | Robust | Versatile
Aptamers for key proteins like ACVR1A, Akt, EGFR, and VEGFR.
Adjuvants
Enhancing | Synergistic | Effective
Enhance immune responses with high-purity, potent CpG ODNs.
Laboratory Equipment
Innovative | Reliable | High-Precision
Effortlessly streamline DNA extraction with CB™ Magnetic-Nanoparticle Systems.
Stable Cell Line Generation
Reliable | Scalable | Customizable
Fast proposals, regular updates, and detailed reports; strict quality control, and contamination-free cells; knockout results in 4-6 weeks.
Target-based Drug Discovery Service
Innovative | Comprehensive | Efficient
Target identification, validation, and screening for drug discovery and therapeutic development.
Custom Viral Service
Versatile | High-Yield | Safe
Unbeatable pricing, fully customizable viral packaging services (covering 30,000+ human genes, 200+ mammals, 50+ protein tags).
Custom Antibody Service
Precise | Flexible | Efficient
End-to-end antibody development support, from target to validation, enabling clients to rapidly obtain application-ready antibodies.
Antibody-Drug Conjugation Service
Integrated | Controlled | Translational
Comprehensive solutions covering design, development, and validation to ensure conjugated drugs with consistent quality and clinical potential.
Protein Degrader Service
Efficient | High-Precision | Advanced Therapeutics
Harness the power of protein degraders for precise protein degradation, expanding druggable targets and enhancing therapeutic effectiveness for cutting-edge drug discovery.
Nucleotides Service
Accurate | Flexible | High-Quality
Custom synthesis of oligonucleotides, primers, and probes for gene editing, PCR, and RNA studies.
Custom RNA Service
Custom RNA ServicePrecise | Flexible | GMP-ReadyCustom
RNA design, synthesis, and manufacturing—covering mRNA, saRNA, circRNA, and RNAi. Fast turnaround, rigorous QC, and seamless transition from research to GMP production.
Custom Libraries Construction Service
Comprehensive | High-throughput | Accurate
Custom cDNA, genomic, and mutagenesis libraries for drug discovery, screening, and functional genomics.
Gene Editing Services
Precise | Efficient | Targeted
Gene editing solutions for gene editing, knockouts, knock-ins, and customized genetic modifications. Integrated multi-platform solutions for one-stop CRISPR sgRNA library synthesis and gene screening services
Microbe Genome Editing Service
Precise | Scalable | Customizable
Enhance microbial productivity with advanced genome editing using Rec-mediated recombination and CRISPR/Cas9 technologies.
Biosafety Testing Service
Reliable | Comprehensive | Regulated
Complete biosafety testing solutions for gene therapy, viral vectors, and biologics development.
Plant Genetic Modification Service
Advanced | Sustainable | Tailored
Genetic modification for crop improvement, biotechnology, and plant-based research solutions.
Plant-based Protein Production Service
Efficient | Scalable | Customizable
Plant-based protein expression systems for biopharmaceuticals, enzyme production, and research.
Aptamers Service
Innovative | Fast | Cost-Effective
Revolutionizing drug delivery and diagnostic development with next-generation high-throughput aptamer selection and synthesis technologies.
CGT Biosafety Testing
Comprehensive | Accurate | Regulatory-compliant
Internationally certified evaluation system for biologics, gene therapies, nucleic acid drugs, and vaccines.
Pandemic Detection Solutions
Rapid | Precise | Scalable
Balancing accuracy, accessibility, affordability, and rapid detection to safeguard public health and strengthen global response to infectious diseases.
cGMP Cell Line Development
Reliable | Scalable | Industry-leading
Stable expression over 15 generations with rapid cell line development in just 3 months.
Supports adherent and suspension cell lines, offering MCB, WCB, and PCB establishment.
GMP mRNA Production
Efficient | Scalable | Precise
Scalable mRNA production from milligrams to grams, with personalized process design for sequence optimization, cap selection, and nucleotide modifications, all in one service.
GMP Plasmid Production
High Quality | Scalable | Regulatory-compliant
Our plasmid production services span Non-GMP, GMP-Like, and GMP-Grade levels, with specialized options for linearized plasmids.
GMP Viral Vector Manufacturing
Scalable | High Yield | Quality-driven
Advanced platforms for AAV, adenovirus, lentivirus, and retrovirus production, with strict adherence to GMP guidelines and robust quality control.
AI-Driven Gene Editing and Therapy
Innovative | Precision | Transformative
AI-powered one-click design for customized CRISPR gene editing strategy development.
AI-Antibody Engineering Fusion
Next-Generation | Targeted | Efficient
AI and ML algorithms accelerate antibody screening and predict new structures, unlocking unprecedented possibilities in antibody engineering.
AI-Driven Enzyme Engineering
Smart | Efficient | Tailored
High-throughput enzyme activity testing with proprietary datasets and deep learning models for standardized and precise enzyme engineering design.
AI-Enhanced Small Molecule Screening
Predictive | Efficient | Insightful
Leverage AI to uncover hidden high-potential small molecules, prioritize leads intelligently, and reduce costly trial-and-error in early drug discovery.
AI-Driven Protein Degrader Drug Development
Innovative | Targeted | Accelerated
Use AI-guided design to optimize protein degraders, addressing design complexity and enhancing efficacy while shortening development timelines.
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
The ATP-binding cassette, sub-family A (ABC1), member 7 (ABCA7) gene was first discovered in human macrophages and is abundantly expressed in bone marrow cells, mainly monocytes and granulocytes. In situ hybridization experiments showed that ABCA7 was highly expressed in the neurons of adult rats, especially in the hippocampal CA1 region. The study found that ABCA7 mRNA expression in microglia is 10 times higher than in neurons. The human ABCA7 gene encodes a polypeptide molecule of 2,146 amino acids with a molecular mass of 220 KDa. This polypeptide molecule is a molecular transporter that contains two highly conserved cytoplasmic ATP-binding cassettes and two transmembrane domains that are responsible for transporting lipids and other lipoprotein molecules across the cell membrane.
Alzheimer's disease (AD) is a neurodegenerative disease characterized by neurofibrillary tangles and senile plaques in the brain. The clinical manifestations are progressive cognitive decline and eventually development of dementia. The deposition of amyloid β (Aβ) in the central nervous system to form senile plaques is the core event of AD. Abnormal cholesterol metabolism plays an important role in the development of AD and the production of Aβ. ABCA7, like members of other ABC families, is involved in lipid metabolism and plays an important role in the development of AD.
The Effect of ABCA7 and Blood Lipids
Serum high fat and high cholesterol levels are risk factors for the onset of AD. Serum total cholesterol levels are positively correlated with the prevalence of AD and mild cognitive impairment. Elevated serum cholesterol levels can increase the risk of AD by more than 3 times. At present, the lipid transport of ABCA7 is still unclear. ABCA7 is the closest homologue of ABCA1 (the two amino acids are 54% identical). It is predicted that ABCA7 will strongly stimulate the secretion of intracellular cholesterol to apoE and apoA-I which has not yet bound lipids. ABCA7 promotes lipid excretion in hematopoietic cells, especially in macrophages. However, studies have found that the expression of ABCA7 promotes the outflow of phospholipids including lecithin and sphingomyelin, and does not effectively promote cholesterol efflux. Unlike expected, ABCA7 was isolated from macrophages and the mice exhibited normal cholesterol and lecithin release, suggesting that ABCA7 may have a different biological function. Therefore, how ABCA7 affects lipid metabolism in AD patients requires more in-depth studies to confirm.
Figure 1. Possible pathogenic pathways mediated by ABCA7 in AD. (Aikawa, et al. 2018).
ABCA7 and Aβ
Aβ plays an important role in the pathological mechanism of AD. It is not only the starting substance and main structural substance of senile plaque, but also toxic to nerve cells, so it is considered to be an early trigger for AD. Aβ is derived from an amyloid transmembrane precursor protein (APP) by proteolytic enzyme β and γ, mainly including Aβ40 and Aβ42. Steinberg et al found that (APP) gene, presenilin 1 (PS1) gene, and premature 2 (PS2) gene mutations lead to the development of early-onset familial AD. The ABCA7 gene is one of the susceptible genes of a delayed-onset AD, and its loss of function will significantly increase the risk of disease. ABCA7 promotes cholesterol efflux and inhibits Aβ secretion, and enhances the function of macrophage apoptotic cells through the C1q complement pathway. Studies by Vasquez et al have shown that ABCA7 expression reduces the risk of AD by enhancing the action of phagocytosis of Aβ, apoptotic cells, and synthetic substrates. ABCA7 reduces the risk of AD by removing Aβ deposits.
Recently, it has been found that knocking out the ABCA7 gene in the AD rat model increases the Aβ plaque deposit in the hippocampus of the brain by 53%. Hughes et al. found that the ABCA7rs3764650 polymorphism was significantly associated with Aβ plaques by PET imaging. In the model of knockout of ABCA7, phagocytic cells aggregate Aβ into dimers or trimers, suggesting that knockdown of the ABCA7 gene attenuates the ability to clear Aβ. Knocking out ABCA7 will alter the blood lipid levels in the mouse brain and impair memory. Sakae et al. found in the cultured amyloid APP/PS1 mouse model that the absence of ABCA7 accelerated the formation of plaque burden. Its mechanism may be to promote the decomposition of APP into Aβ by increasing the level of β-secretase, but it does not affect the clearance of Aβ.
ABCA7 Common Site Variation and AD
Recently, it has been reported that the AD protective rs3764650 allele is associated with increased ABCA7 gene expression, and it is speculated that related SNPs can protect AD by increasing the expression of ABCA7. Liu et al.'s study on ABCA7 genotype and AD in Chinese Han people found that the ABCA7 genotype is closely related to a sporadic AD in Chinese Han people. The results were influenced by age and ApoE ε4 status, ie, ApoE ε4 carriers and age increased the risk associated with ABCA7 for sporadic AD. However, the LS3764650 minimal allele G was not significantly associated with AD. Studies have shown that ABCA7 rs3764650 and ApoEε4 have significant correlations in language learning and memory, working memory and transient memory. The expression of ABCA7 in different parts of the brain is weak.
Reitz et al. found a new ABCA7 SNP locus rs115550680 (OR=1.78) in a study of 5,896 African Americans over 60 years of age. A recent study of the Icelandic population showed that a rare loss of function in ABCA7 would increase the risk of AD (OR = 2.1), and in a second study of the same population, the association had an OR of 1.7. The variation of the locus rs200538373 resulted in the early termination of the codon. Therefore, it is speculated that the loss of ABCA7 function increases the risk of AD, and increasing the expression of ABCA7 is associated with a lower risk of AD. In a study of African Americans by Cukier et al., there was a high linkage disequilibrium between deletions of the ABCA7 risk allele, and ABCA7 deletions may exhibit ethnically specific pathogenic changes. However, ABCA7 expression was significantly higher in AD patients than in non-AD patients. Therefore, the expression of ABCA7 seems to be a compensatory mechanism.
References:
Contact us today for a free consultation with the scientific team and discover how Creative Biogene can be a valuable resource and partner for your organization.
Inquiry
Copyright © Creative Biogene. All rights reserved.