Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Premade Virus Particles
Ready-to-Use | High Titer | Versatile Applications
Premade AAV, adenovirus, lentivirus particles, safe, stable, in stock.
Virus-Like Particles (VLPs)
Stable | Scalable | Customizable
Advanced VLPs for vaccine development (Chikungunya, Dengue, SARS-CoV-2), gene therapy (AAV1 & AAV9), and drug screening (SSTR2, CCR5).
Oligonucleotide Products
Precise | High Yield | Tailored Solutions
Accelerate your research with cost-effective LncRNA qPCR Array Technology.
RNA Interference Products
Targeted | Potent | High Specificity
Human Druggable Genome siRNA Library enables efficient drug target screening.
Recombinant Drug Target Proteins
Authentic | Versatile | Accelerated
Providing functional, high-purity recombinant proteins—including membrane proteins and nanodiscs—to overcome bottlenecks in drug screening and target validation.
Clones
Validated | Reliable | Comprehensive Collection
Ready-to-use clones for streamlined research and development.
Kits
Complete | Convenient | High Sensitivity
Chromogenic LAL Endotoxin Assay Kit ensures precise, FDA-compliant endotoxin quantification for biosafety testing.
Enzymes
Purified | Stable | Efficient
Powerful Tn5 Transposase for DNA insertion and random library construction.
Aptamers
Highly Specific | Robust | Versatile
Aptamers for key proteins like ACVR1A, Akt, EGFR, and VEGFR.
Adjuvants
Enhancing | Synergistic | Effective
Enhance immune responses with high-purity, potent CpG ODNs.
Laboratory Equipment
Innovative | Reliable | High-Precision
Effortlessly streamline DNA extraction with CB™ Magnetic-Nanoparticle Systems.
Stable Cell Line Generation
Reliable | Scalable | Customizable
Fast proposals, regular updates, and detailed reports; strict quality control, and contamination-free cells; knockout results in 4-6 weeks.
Target-based Drug Discovery Service
Innovative | Comprehensive | Efficient
Target identification, validation, and screening for drug discovery and therapeutic development.
Custom Viral Service
Versatile | High-Yield | Safe
Unbeatable pricing, fully customizable viral packaging services (covering 30,000+ human genes, 200+ mammals, 50+ protein tags).
Custom Antibody Service
Precise | Flexible | Efficient
End-to-end antibody development support, from target to validation, enabling clients to rapidly obtain application-ready antibodies.
Antibody-Drug Conjugation Service
Integrated | Controlled | Translational
Comprehensive solutions covering design, development, and validation to ensure conjugated drugs with consistent quality and clinical potential.
Protein Degrader Service
Efficient | High-Precision | Advanced Therapeutics
Harness the power of protein degraders for precise protein degradation, expanding druggable targets and enhancing therapeutic effectiveness for cutting-edge drug discovery.
Nucleotides Service
Accurate | Flexible | High-Quality
Custom synthesis of oligonucleotides, primers, and probes for gene editing, PCR, and RNA studies.
Custom RNA Service
Custom RNA ServicePrecise | Flexible | GMP-ReadyCustom
RNA design, synthesis, and manufacturing—covering mRNA, saRNA, circRNA, and RNAi. Fast turnaround, rigorous QC, and seamless transition from research to GMP production.
Custom Libraries Construction Service
Comprehensive | High-throughput | Accurate
Custom cDNA, genomic, and mutagenesis libraries for drug discovery, screening, and functional genomics.
Gene Editing Services
Precise | Efficient | Targeted
Gene editing solutions for gene editing, knockouts, knock-ins, and customized genetic modifications. Integrated multi-platform solutions for one-stop CRISPR sgRNA library synthesis and gene screening services
Microbe Genome Editing Service
Precise | Scalable | Customizable
Enhance microbial productivity with advanced genome editing using Rec-mediated recombination and CRISPR/Cas9 technologies.
Biosafety Testing Service
Reliable | Comprehensive | Regulated
Complete biosafety testing solutions for gene therapy, viral vectors, and biologics development.
Plant Genetic Modification Service
Advanced | Sustainable | Tailored
Genetic modification for crop improvement, biotechnology, and plant-based research solutions.
Plant-based Protein Production Service
Efficient | Scalable | Customizable
Plant-based protein expression systems for biopharmaceuticals, enzyme production, and research.
Aptamers Service
Innovative | Fast | Cost-Effective
Revolutionizing drug delivery and diagnostic development with next-generation high-throughput aptamer selection and synthesis technologies.
CGT Biosafety Testing
Comprehensive | Accurate | Regulatory-compliant
Internationally certified evaluation system for biologics, gene therapies, nucleic acid drugs, and vaccines.
Pandemic Detection Solutions
Rapid | Precise | Scalable
Balancing accuracy, accessibility, affordability, and rapid detection to safeguard public health and strengthen global response to infectious diseases.
cGMP Cell Line Development
Reliable | Scalable | Industry-leading
Stable expression over 15 generations with rapid cell line development in just 3 months.
Supports adherent and suspension cell lines, offering MCB, WCB, and PCB establishment.
GMP mRNA Production
Efficient | Scalable | Precise
Scalable mRNA production from milligrams to grams, with personalized process design for sequence optimization, cap selection, and nucleotide modifications, all in one service.
GMP Plasmid Production
High Quality | Scalable | Regulatory-compliant
Our plasmid production services span Non-GMP, GMP-Like, and GMP-Grade levels, with specialized options for linearized plasmids.
GMP Viral Vector Manufacturing
Scalable | High Yield | Quality-driven
Advanced platforms for AAV, adenovirus, lentivirus, and retrovirus production, with strict adherence to GMP guidelines and robust quality control.
AI-Driven Gene Editing and Therapy
Innovative | Precision | Transformative
AI-powered one-click design for customized CRISPR gene editing strategy development.
AI-Antibody Engineering Fusion
Next-Generation | Targeted | Efficient
AI and ML algorithms accelerate antibody screening and predict new structures, unlocking unprecedented possibilities in antibody engineering.
AI-Driven Enzyme Engineering
Smart | Efficient | Tailored
High-throughput enzyme activity testing with proprietary datasets and deep learning models for standardized and precise enzyme engineering design.
AI-Enhanced Small Molecule Screening
Predictive | Efficient | Insightful
Leverage AI to uncover hidden high-potential small molecules, prioritize leads intelligently, and reduce costly trial-and-error in early drug discovery.
AI-Driven Protein Degrader Drug Development
Innovative | Targeted | Accelerated
Use AI-guided design to optimize protein degraders, addressing design complexity and enhancing efficacy while shortening development timelines.
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
Recent Progress
Laminins are crucial proteins in the basal lamina, and these form a protein network that influences both normal and transformed cell differentiation, migration and adhesion, as well as phenotype and survival. Several studies in cancers have shown that the elevated expression of LAMC2 on cancer cells appears to drive tumorigenesis through its interactions with several cell-surface receptors including several integrins and EGFRs. Accumulating evidence indicated that LAMC2-mediated signaling network plays an important role in the progression, migration and invasion of multiple types of cancer, suggesting that it might be a potential therapeutic anticancer target for inhibiting tumorigenesis. Furthermore, elevated serum levels of LAMC2 in cancer patients might appear as attractive serum-based diagnostic biomarker.
Fig. 1. Schematic illustrations of Laminin-332 structure: Laminin-332 forms a cruciform shaped structure consisting of three chains (alpha3, beta3 and gamma2, also known as LAMC2). (Garg et al, 2014)
It is universally acknowledged that lung cancer is the number one cancer killer, and metastasis is the main cause of high mortality in lung cancer patients. Researchers identified LAMC2 to be significantly upregulated in lung adenocarcinoma metastatic cells. Elevated LAMC2 increased traction force, migration, and invasion of lung adenocarcinoma cells accompanied by the induction of epithelial-mesenchymal transition (EMT), while LAMC2 knockdown decreased traction force, migration, and invasion accompanied by EMT reduction in vitro, along with attenuated metastasis in mice. High LAMC2 was significantly correlated with the mesenchymal marker vimentin expression in lung adenocarcinomas, and with higher risk of recurrence or death in patients with lung adenocarcinoma. These findings, taken together, suggested that LAMC2 may promote metastasis in lung adenocarcinoma via EMT and could be a potential therapeutic target.
In another study, given that non-small cell lung cancer (NSCLC) lacks reliable serological biomarkers for predicting patients' survival and response to treatment, researchers conducted a study to examine the capability of serum LAMC2 and four known tumor markers for disease prognosis and patients' risk stratification. LAMC2, CA 125, CEA, CYFRA 21-1 and SCC levels were retrospectively measured. LAMC2 showed significant prognostic ability for overall survival in the full cohort. LAMC2 and CYFRA 21-1 combination enhanced prognostic models based on common clinical parameters, further enabling stratification of patients into clear risk groups. Thus this study indicated LAMC2 as a novel NSCLC prognostic factor. LAMC2 combined with CA 125 and CYFRA 21-1 could aid in clinical prediction of NSCLC patients' overall survival and inform clinical practice.
In search of the effective diagnostic, prognostic and disease-monitoring biomarkers for pancreatic ductal adenocarcinoma (PDAC), researchers identified a total of 2,190 non-redundant proteins in four PDAC tissues and their adjacent benign tissues. results showed a significant elevation of LAMC2 in pancreatic cancer serum. Extensive validation of LAMC2 in healthy, benign, and PDAC sera from geographically diverse cohorts demonstrated a significant increase in levels in early-stage PDAC compared to benign diseases. The combination of LAMC2 and CA19.9 improved the individual diagnostic performance in distinguishing healthy and benign subjects from PDAC. Additionally, LAMC2 was positive in about 60% of patients with PDAC who had no CA19.9 elevation. Thus it was concluded that LAMC2 is a new serum biomarker for pancreatic adenocarcinoma.
To evaluate the effects of SNPs (single nucleotide polymorphisms) on CRC (colorectal cancer) susceptibility in Chinese populations, researchers screened out all potentially functional SNPs in exons of lncRNAs (long non-coding RNA) located in CRC susceptibility loci. Analysis showed that CG and GG genotypes of the rs2147578 were significantly associated with increased risk for CRC occurrence. Bioinformatics analyses showed that rs2147578 is located in the transcript of lnc-LAMC2-1:1 and could influence the binding of lnc-LAMC2-1:1/miR-128-3p. Further analysis showed that rs2147578 is correlated with the expression of a well-established oncogene LAMC2. These findings indicated that rs2147578 in lnc-LAMC2-1:1 might be a genetic modifier for the development of CRC.
References:
Contact us today for a free consultation with the scientific team and discover how Creative Biogene can be a valuable resource and partner for your organization.
Inquiry
Copyright © Creative Biogene. All rights reserved.