Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Premade Virus Particles
Ready-to-Use | High Titer | Versatile Applications
Premade AAV, adenovirus, lentivirus particles, safe, stable, in stock.
Virus-Like Particles (VLPs)
Stable | Scalable | Customizable
Advanced VLPs for vaccine development (Chikungunya, Dengue, SARS-CoV-2), gene therapy (AAV1 & AAV9), and drug screening (SSTR2, CCR5).
Oligonucleotide Products
Precise | High Yield | Tailored Solutions
Accelerate your research with cost-effective LncRNA qPCR Array Technology.
RNA Interference Products
Targeted | Potent | High Specificity
Human Druggable Genome siRNA Library enables efficient drug target screening.
Recombinant Drug Target Proteins
Authentic | Versatile | Accelerated
Providing functional, high-purity recombinant proteins—including membrane proteins and nanodiscs—to overcome bottlenecks in drug screening and target validation.
Clones
Validated | Reliable | Comprehensive Collection
Ready-to-use clones for streamlined research and development.
Kits
Complete | Convenient | High Sensitivity
Chromogenic LAL Endotoxin Assay Kit ensures precise, FDA-compliant endotoxin quantification for biosafety testing.
Enzymes
Purified | Stable | Efficient
Powerful Tn5 Transposase for DNA insertion and random library construction.
Aptamers
Highly Specific | Robust | Versatile
Aptamers for key proteins like ACVR1A, Akt, EGFR, and VEGFR.
Adjuvants
Enhancing | Synergistic | Effective
Enhance immune responses with high-purity, potent CpG ODNs.
Laboratory Equipment
Innovative | Reliable | High-Precision
Effortlessly streamline DNA extraction with CB™ Magnetic-Nanoparticle Systems.
Stable Cell Line Generation
Reliable | Scalable | Customizable
Fast proposals, regular updates, and detailed reports; strict quality control, and contamination-free cells; knockout results in 4-6 weeks.
Target-based Drug Discovery Service
Innovative | Comprehensive | Efficient
Target identification, validation, and screening for drug discovery and therapeutic development.
Custom Viral Service
Versatile | High-Yield | Safe
Unbeatable pricing, fully customizable viral packaging services (covering 30,000+ human genes, 200+ mammals, 50+ protein tags).
Custom Antibody Service
Precise | Flexible | Efficient
End-to-end antibody development support, from target to validation, enabling clients to rapidly obtain application-ready antibodies.
Antibody-Drug Conjugation Service
Integrated | Controlled | Translational
Comprehensive solutions covering design, development, and validation to ensure conjugated drugs with consistent quality and clinical potential.
Protein Degrader Service
Efficient | High-Precision | Advanced Therapeutics
Harness the power of protein degraders for precise protein degradation, expanding druggable targets and enhancing therapeutic effectiveness for cutting-edge drug discovery.
Nucleotides Service
Accurate | Flexible | High-Quality
Custom synthesis of oligonucleotides, primers, and probes for gene editing, PCR, and RNA studies.
Custom RNA Service
Custom RNA ServicePrecise | Flexible | GMP-ReadyCustom
RNA design, synthesis, and manufacturing—covering mRNA, saRNA, circRNA, and RNAi. Fast turnaround, rigorous QC, and seamless transition from research to GMP production.
Custom Libraries Construction Service
Comprehensive | High-throughput | Accurate
Custom cDNA, genomic, and mutagenesis libraries for drug discovery, screening, and functional genomics.
Gene Editing Services
Precise | Efficient | Targeted
Gene editing solutions for gene editing, knockouts, knock-ins, and customized genetic modifications. Integrated multi-platform solutions for one-stop CRISPR sgRNA library synthesis and gene screening services
Microbe Genome Editing Service
Precise | Scalable | Customizable
Enhance microbial productivity with advanced genome editing using Rec-mediated recombination and CRISPR/Cas9 technologies.
Biosafety Testing Service
Reliable | Comprehensive | Regulated
Complete biosafety testing solutions for gene therapy, viral vectors, and biologics development.
Plant Genetic Modification Service
Advanced | Sustainable | Tailored
Genetic modification for crop improvement, biotechnology, and plant-based research solutions.
Plant-based Protein Production Service
Efficient | Scalable | Customizable
Plant-based protein expression systems for biopharmaceuticals, enzyme production, and research.
Aptamers Service
Innovative | Fast | Cost-Effective
Revolutionizing drug delivery and diagnostic development with next-generation high-throughput aptamer selection and synthesis technologies.
CGT Biosafety Testing
Comprehensive | Accurate | Regulatory-compliant
Internationally certified evaluation system for biologics, gene therapies, nucleic acid drugs, and vaccines.
Pandemic Detection Solutions
Rapid | Precise | Scalable
Balancing accuracy, accessibility, affordability, and rapid detection to safeguard public health and strengthen global response to infectious diseases.
cGMP Cell Line Development
Reliable | Scalable | Industry-leading
Stable expression over 15 generations with rapid cell line development in just 3 months.
Supports adherent and suspension cell lines, offering MCB, WCB, and PCB establishment.
GMP mRNA Production
Efficient | Scalable | Precise
Scalable mRNA production from milligrams to grams, with personalized process design for sequence optimization, cap selection, and nucleotide modifications, all in one service.
GMP Plasmid Production
High Quality | Scalable | Regulatory-compliant
Our plasmid production services span Non-GMP, GMP-Like, and GMP-Grade levels, with specialized options for linearized plasmids.
GMP Viral Vector Manufacturing
Scalable | High Yield | Quality-driven
Advanced platforms for AAV, adenovirus, lentivirus, and retrovirus production, with strict adherence to GMP guidelines and robust quality control.
AI-Driven Gene Editing and Therapy
Innovative | Precision | Transformative
AI-powered one-click design for customized CRISPR gene editing strategy development.
AI-Antibody Engineering Fusion
Next-Generation | Targeted | Efficient
AI and ML algorithms accelerate antibody screening and predict new structures, unlocking unprecedented possibilities in antibody engineering.
AI-Driven Enzyme Engineering
Smart | Efficient | Tailored
High-throughput enzyme activity testing with proprietary datasets and deep learning models for standardized and precise enzyme engineering design.
AI-Enhanced Small Molecule Screening
Predictive | Efficient | Insightful
Leverage AI to uncover hidden high-potential small molecules, prioritize leads intelligently, and reduce costly trial-and-error in early drug discovery.
AI-Driven Protein Degrader Drug Development
Innovative | Targeted | Accelerated
Use AI-guided design to optimize protein degraders, addressing design complexity and enhancing efficacy while shortening development timelines.
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
ASPHAspartyl/Asparaginyl beta-hydroxylase (ASPH, AAH) is a highly conserved deoxygenase that is present in cells during mammalian embryonic development. Human Aspartyl/Asparaginyl β-hydroxylase (HAAH) is a highly conserved deoxygenase that plays an important role in cell growth, differentiation, migration, adhesion, and movement. Studies have shown that the overexpression of ASPH is closely related to tumorigenesis, proliferation, invasion and metastasis, and it may be an important factor and molecular marker for regulating tumor cell growth in vivo.
ASPH Distribution and Expression Regulation
ASPH is relatively low or absent in most normal tissues and highly expressed in placental trophoblast cells and adrenal cells. And ASPH is overexpressed in liver cancer, intrahepatic cholangiocarcinoma, lung cancer, colorectal cancer, pancreatic cancer, breast cancer and neuroblastoma tissues. HUI YANG et al. confirmed that ASPH is highly expressed in breast cancer MCF-7, liver cancer SMMC-7721, cervical cancer HeLa and ovarian cancer SKOV, but it is lower expressed in renal adenocarcinoma ACHN, bladder cancer BIU-87 and laryngeal cancer Hep-2. No expression was observed in the normal mouse embryonic osteoblast cell line MC3T3.
In addition, overexpressed ASPH can be released from tumor cells and present in the soluble or free form in human serum and body fluids. Insulin or IGF-1 signaling regulates ASPH mRNA expression via Erk protein kinase and PI3 kinase-Akt protein. Overexpression of the ASPH protein inhibits the activity of glycogen synthase kinase-3 (GSK-3), whereas its mRNA does not. Due to the lack of ASPH, the loss of aspartic acid and the asparagine hydroxylated EGF domain protein may affect proteins involved in the pathogenesis of lens ectopic disease. These studies indicate that ASPH is associated with eye diseases.
ASPH and Hepatocellular Carcinoma
Iwagami et al. identified shRNA-mediated knockout and CRISPR/CaS9-mediated ASPH gene knockdown as well as enzymatic inhibition of ASPH-directed human liver cancer cells undergoing cellular senescence. Inhibition of ASPH activity is mediated by GSK3β phosphorylation. In addition, ASPH binds to GSK3β to inhibit its phosphorylation (inactivation), thereby blocking signal transduction of its upstream kinase. The results suggest that ASPH is a potential therapeutic target. The second-generation β-hydroxylase inhibitor is an effective anti-tumor drug that prevents the growth and development of HCC in the liver by inducing cell senescence.
Figure. 1 Hypothesis of how ASPH may mediate senescence of HCC cells. (Iwagami, et al. 2015)
Tomimaru et al. demonstrated that ASPH protein induces antigen-specific CD4+ T cell and CD8+ CTL activation, and ASPH-derived HLA class I and class II restriction peptides can activate CD4+ T cells and CD8+CTLs from Hepatocellular carcinoma (HCC) patients. This study provides a theoretical basis for preventive development (prevention or reduction of micrometastasis after surgical removal of HCC) or peptide-based methods.
The Role of ASPH in Tumor Cell Invasion and Metastasis
The malignant phenotype produced by ASPH overexpression is characterized by promoting cell movement and invasion. Hee-Jung Yoo established four human cholangiocarcinomas (CC) cell lines, including the typical sarcomatoid phenotype SCK, poorly differentiated JCK1, moderately differentiated Cho-CK, and highly differentiated Choi-CK. Furthermore, 260 genes that were significantly overexpressed and 247 genes that were underexpressed were determined in a comparison of expression patterns between SCK sarcoma cells and highly differentiated Choi-CK cells. Four overexpressed genes, including ASPH, were verified by Northern blot and immunohistochemistry.
Kui Wang's research indicates that the expression of ASPH is increased in liver cancer compared with adjacent tissues, which is related to the poor differentiation of liver cancer cells, so ASPH expression is an independent factor affecting recurrence. High expression of ASPH also predicts intrahepatic metastasis, while detection of lower levels of protein is associated with more differentiated tumor phenotypes. Wands et al found that high expression of ASPH in liver cancer significantly increased the invasion of HepG2 and Huh-7 cells. The degree of overexpression exhibited by ASPH correlates with tumor size, invasive growth pattern, histological grade, vascular invasion, and poor survival. ASPH overexpression can promote the malignant transformation of biliary epithelial cells, promote cell movement, and contribute to the invasive growth of cholangiocarcinoma cells. Sturla et al. showed that ASPH has a high expression level in glioblastoma hypoxia and low expression in hypoxic regions. The inhibition of ASPH expression can significantly reduce tumor cell viability and directional motor ability.
ASPH Mediates Anti-tumor Immune Response
The ASPH gene is overexpressed in HCC tumors and its protein is translocated from the endoplasmic reticulum to the plasma membrane. It is an accessible extracellular environment that acts as a tumor-associated antigen (TAA), producing anti-tumor immune responses using ASPH-loaded DCs. A similar anti-tumor response was obtained using the mouse SP2-0 myeloma cell line expressing ASPH as a target cell.
Studies have found that ASPH stimulation can lead to significant growth of antigen-specific CD4+ T cells. Using spleen cells of mice immunized with ASPH-DC, re-stimulation by ASPH protein showed higher levels of IFNc secretion and increased granzyme Bhi CD8+ cells. And in surgically resected liver cancer, ASPH-DC immunotherapy may delay its recurrence. The study also confirmed that the cytotoxicity of ASPH-loaded DC immunization in vitro can counter cholangiocarcinoma cells and significantly inhibit intrahepatic tumor growth and metastasis.
References:
Contact us today for a free consultation with the scientific team and discover how Creative Biogene can be a valuable resource and partner for your organization.
Inquiry
Copyright © Creative Biogene. All rights reserved.