Pages
Products

Metformin inhibits development of diabetic retinopathy through microRNA-497a-5p

American journal of translational research

Authors: Zhang, Yi; Chen, Fei; Wang, Liang;
PMID: 29312507

Abstract

Metformin is an AMP-activated protein kinase activator that is widely prescribed for treating type 2 diabetes. Recently, metformin was reported to slow down the development and alleviate the severity of diabetic retinopathy (DR). However, the underlying mechanisms remain unclear. Here, we used an alloxan-induced diabetes mouse model to study the effects of metformin on the development of DR as well as the mechanisms. We found that DR was induced in alloxan-treated mice 10 weeks after alloxan treatment, and treatment of metformin did not prevent the occurrence of alloxan-induced diabetes. However, metformin significantly alleviated the severity of DR, seemingly through attenuating the retina neovascularization. Moreover, the total vascular endothelial cell growth factor A (VEGF-A) mRNA in mouse eyes was not altered by metformin, but the protein levels was decreased. Further analysis showed that metformin may inhibit the VEGF-A protein translation through inducing a VEGF-A-targeting microRNA, microRNA-497a-5p, resulting in reduced retina neovascularization. Thus, our study suggests a previously unappreciated role of metformin in the prevention of development of DR.

We use cookies to understand how you use our site and to improve the overall user experience. This includes personalizing content and advertising. Read our Privacy Policy

x