Pages
Products

Epigenetic Control of Rho-Associated Protein Kinase 2 in Neurodegeneration

Journal of Alzheimer's Disease

Authors: Chen, Bing; Zheng, Weiming;
PMID: 31658060

Abstract

Upregulation of Rho-associated protein kinase 2 (ROCK2) hallmarks the progression of neurodegenerative diseases. However, the molecular mechanisms underlying the regulation of ROCK2 expression are not clear and thus addressed in the current study. We generated a subacute model of Parkinson's disease in mice with a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) method. The MPTP model was validated by impaired rotational behavior of the mice upon apomorphine exposure, astrocytic activation, and reduction in tyrosine-hydroxylase-positive neurons in the mouse striatum. Moreover, MPTP induced increases in ROCK2 protein but not in ROCK2 mRNA. Further analysis showed that MPTP inhibited the expression of microRNA-291 (miR-291), which suppressed ROCK2 mRNA via 3'-UTR-binding in neuronal cells to increase ROCK2 protein. Intracranial injection of miR-291 four days before MPTP alleviated the impaired rotational behavior of the mice upon apomorphine exposure, MPTP-induced astrocytic activation, and the reduction in tyrosine-hydroxylase-positive neurons in the mouse striatum. Together, these data suggest that miR-291 has a protective role in neurodegeneration, likely through regulation of ROCK2.

We use cookies to understand how you use our site and to improve the overall user experience. This includes personalizing content and advertising. Read our Privacy Policy

x