Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Premade Virus Particles
Ready-to-Use | High Titer | Versatile Applications
Premade AAV, adenovirus, lentivirus particles, safe, stable, in stock.
Virus-Like Particles (VLPs)
Stable | Scalable | Customizable
Advanced VLPs for vaccine development (Chikungunya, Dengue, SARS-CoV-2), gene therapy (AAV1 & AAV9), and drug screening (SSTR2, CCR5).
Oligonucleotide Products
Precise | High Yield | Tailored Solutions
Accelerate your research with cost-effective LncRNA qPCR Array Technology.
RNA Interference Products
Targeted | Potent | High Specificity
Human Druggable Genome siRNA Library enables efficient drug target screening.
Recombinant Drug Target Proteins
Authentic | Versatile | Accelerated
Providing functional, high-purity recombinant proteins—including membrane proteins and nanodiscs—to overcome bottlenecks in drug screening and target validation.
Clones
Validated | Reliable | Comprehensive Collection
Ready-to-use clones for streamlined research and development.
Kits
Complete | Convenient | High Sensitivity
Chromogenic LAL Endotoxin Assay Kit ensures precise, FDA-compliant endotoxin quantification for biosafety testing.
Enzymes
Purified | Stable | Efficient
Powerful Tn5 Transposase for DNA insertion and random library construction.
Aptamers
Highly Specific | Robust | Versatile
Aptamers for key proteins like ACVR1A, Akt, EGFR, and VEGFR.
Adjuvants
Enhancing | Synergistic | Effective
Enhance immune responses with high-purity, potent CpG ODNs.
Laboratory Equipment
Innovative | Reliable | High-Precision
Effortlessly streamline DNA extraction with CB™ Magnetic-Nanoparticle Systems.
Stable Cell Line Generation
Reliable | Scalable | Customizable
Fast proposals, regular updates, and detailed reports; strict quality control, and contamination-free cells; knockout results in 4-6 weeks.
Target-based Drug Discovery Service
Innovative | Comprehensive | Efficient
Target identification, validation, and screening for drug discovery and therapeutic development.
Custom Viral Service
Versatile | High-Yield | Safe
Unbeatable pricing, fully customizable viral packaging services (covering 30,000+ human genes, 200+ mammals, 50+ protein tags).
Custom Antibody Service
Precise | Flexible | Efficient
End-to-end antibody development support, from target to validation, enabling clients to rapidly obtain application-ready antibodies.
Antibody-Drug Conjugation Service
Integrated | Controlled | Translational
Comprehensive solutions covering design, development, and validation to ensure conjugated drugs with consistent quality and clinical potential.
Protein Degrader Service
Efficient | High-Precision | Advanced Therapeutics
Harness the power of protein degraders for precise protein degradation, expanding druggable targets and enhancing therapeutic effectiveness for cutting-edge drug discovery.
Nucleotides Service
Accurate | Flexible | High-Quality
Custom synthesis of oligonucleotides, primers, and probes for gene editing, PCR, and RNA studies.
Custom RNA Service
Custom RNA ServicePrecise | Flexible | GMP-ReadyCustom
RNA design, synthesis, and manufacturing—covering mRNA, saRNA, circRNA, and RNAi. Fast turnaround, rigorous QC, and seamless transition from research to GMP production.
Custom Libraries Construction Service
Comprehensive | High-throughput | Accurate
Custom cDNA, genomic, and mutagenesis libraries for drug discovery, screening, and functional genomics.
Gene Editing Services
Precise | Efficient | Targeted
Gene editing solutions for gene editing, knockouts, knock-ins, and customized genetic modifications. Integrated multi-platform solutions for one-stop CRISPR sgRNA library synthesis and gene screening services
Microbe Genome Editing Service
Precise | Scalable | Customizable
Enhance microbial productivity with advanced genome editing using Rec-mediated recombination and CRISPR/Cas9 technologies.
Biosafety Testing Service
Reliable | Comprehensive | Regulated
Complete biosafety testing solutions for gene therapy, viral vectors, and biologics development.
Plant Genetic Modification Service
Advanced | Sustainable | Tailored
Genetic modification for crop improvement, biotechnology, and plant-based research solutions.
Plant-based Protein Production Service
Efficient | Scalable | Customizable
Plant-based protein expression systems for biopharmaceuticals, enzyme production, and research.
Aptamers Service
Innovative | Fast | Cost-Effective
Revolutionizing drug delivery and diagnostic development with next-generation high-throughput aptamer selection and synthesis technologies.
CGT Biosafety Testing
Comprehensive | Accurate | Regulatory-compliant
Internationally certified evaluation system for biologics, gene therapies, nucleic acid drugs, and vaccines.
Pandemic Detection Solutions
Rapid | Precise | Scalable
Balancing accuracy, accessibility, affordability, and rapid detection to safeguard public health and strengthen global response to infectious diseases.
cGMP Cell Line Development
Reliable | Scalable | Industry-leading
Stable expression over 15 generations with rapid cell line development in just 3 months.
Supports adherent and suspension cell lines, offering MCB, WCB, and PCB establishment.
GMP mRNA Production
Efficient | Scalable | Precise
Scalable mRNA production from milligrams to grams, with personalized process design for sequence optimization, cap selection, and nucleotide modifications, all in one service.
GMP Plasmid Production
High Quality | Scalable | Regulatory-compliant
Our plasmid production services span Non-GMP, GMP-Like, and GMP-Grade levels, with specialized options for linearized plasmids.
GMP Viral Vector Manufacturing
Scalable | High Yield | Quality-driven
Advanced platforms for AAV, adenovirus, lentivirus, and retrovirus production, with strict adherence to GMP guidelines and robust quality control.
AI-Driven Gene Editing and Therapy
Innovative | Precision | Transformative
AI-powered one-click design for customized CRISPR gene editing strategy development.
AI-Antibody Engineering Fusion
Next-Generation | Targeted | Efficient
AI and ML algorithms accelerate antibody screening and predict new structures, unlocking unprecedented possibilities in antibody engineering.
AI-Driven Enzyme Engineering
Smart | Efficient | Tailored
High-throughput enzyme activity testing with proprietary datasets and deep learning models for standardized and precise enzyme engineering design.
AI-Enhanced Small Molecule Screening
Predictive | Efficient | Insightful
Leverage AI to uncover hidden high-potential small molecules, prioritize leads intelligently, and reduce costly trial-and-error in early drug discovery.
AI-Driven Protein Degrader Drug Development
Innovative | Targeted | Accelerated
Use AI-guided design to optimize protein degraders, addressing design complexity and enhancing efficacy while shortening development timelines.
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
In May 2014, the CHUM Research Center at the University of Montreal found that an enzyme called abhydrolase domain containing 6, ABHD6, could destroy monoacylglycerol and negatively regulate insulin release. Thomas et al. found that inhibition of ABHD6 can enhance the response of β cells to glucose, increase the level of insulin expression in the blood, and increase the sensitivity of their tissues to insulin in order to reduce blood sugar. Therefore, ABHD6 is expected to be a unique new target for the treatment of type 2 diabetes.
ABHD6 is a protein of 337 amino acids with a relative molecular mass of 38,331. The amino acids 1 to 8 form the N-terminal extracellular region. The 9th to 29th amino acids constitute the helix region and are type II membrane protein signal anchors. The 30th to 337th amino acids constitute the intracellular region, in which 148th nucleophilic serine, 278th acid aspartic acid, and highly conserved 306th histidine form a highly conserved catalytic triad. ABHD6 is widely distributed in normal tissues of the human body, with higher contents such as brain, liver and brown adipose tissue.
ABHD6 Function and Mechanism of Action
As a newer target for metabolic diseases and inflammation, ABHD6 has been shown to have three main effects: 1. Regulating lipid metabolism and insulin secretion; 2. Regulating inflammation and neurological diseases through endogenous cannabinoid signaling; 3. Promoting white adipose issue (WAT) browning and regulating brown adipose issue (BAT) function, thereby regulating systemic energy homeostasis.
The process by which pancreatic beta cells secrete insulin requires the involvement of various cytokines and protein kinase substrates localized on the cell membrane. Monoacylglycerol (MAG) (especially long-chain saturated 1-MAG) plays a key role in this process. MAG can bind to the C1 domain of the Munc-13 protein, and transfer Munc-13 protein to the cell membrane to form a complex soluble NSF attachment protein receptor (SNARE) protein complex. In turn, the vesicles are matured and the efflux of insulin particles is accelerated. ABHD6 is capable of hydrolyzing MAG to produce glycerol and free fatty acids, thereby negatively regulating insulin secretion. Excessive glycerol and fatty acids produced by hydrolysis at the same time can also cause insulin resistance.
Figure 1. Model illustrating how the ABHD6/1-MAG/Munc13-1 network regulates insulin secretion in response to various classes of insulin secretagogues. (Zhao, et al. 2015).
Other studies have shown that diacylglycerol (DAG) is an important source of arachidonic acid (AA) in humans and is a major precursor of prostaglandins and an important signaling molecule in cells. DAG can activate protein kinase C (PKC) and enhance insulin secretion in vivo. DAG can be hydrolyzed by diacylglycerol lipase (DAGL) to form 2-arachidonoylglycero (2-AG), which is then hydrolyzed by ABHD6 to form glycerol and arachidonic acid. Inhibition of ABHD6 and inhibition of the hyper hydrolysis of 2-AG can negatively regulate DAG levels in the body, thereby increasing insulin secretion.
The endogenous cannabis system is composed of cannabinoid receptors, endocannabinoids and endogenous cannabinoid degrading enzymes, which regulates human body emotions and pain sensations, and also plays an important role in cardiovascular regulation and energy metabolism. Endogenous cannabinoids are N-arachidonic acid aminoethanol (anandamide, AEA) and 2-AG. 2-AG can be hydrolyzed by monoglyceride lipolytic enzyme (MAGL), ABHD6, ABHD12 in different tissues to produce AA. 2-AG is involved in the metabolic pathways of various inflammatory factors, such as the production of prostaglandins by the cyclooxygenase (COX) pathway; it is involved in the lipoxygenase (LOX) pathway, producing leukotriene family cytokines. ABHD6 regulates the levels of inflammatory factors such as anti-inflammatory bioactive lipids in the body by regulating the level of 2-AG in the body.
The downstream fat signal MAG activates PPARα (peroxisome proliferator-activated receptors α ) and PPARγ ( peroxisome proliferator-activated receptors γ ) pathways to promote BAT formation and enhance its effects. Energy consumption is increased by fatty acid oxidation and non-shivering heat production while increasing glucose tolerance and insulin sensitivity, and reducing fat content to maintain energy homeostasis. Townsend et al found that inhibition of ABHD6 can increase intracellular MAG content and regulate BAT content and function, which plays a crucial role in preventing and treating diabetes caused by obesity and obesity.
Small Molecule ABHD6 Inhibitor
ABHD6 has many potential advantages as a therapeutic target for diabetes: First, because of its small molecule inhibitors that regulate insulin secretion in a dose-dependent manner, the risk of hypoglycemia can be reduced or avoided. Secondly, the concentration and specificity of ABHD6 distribution in vivo also greatly reduce the adverse reactions of its inhibitors in reducing blood glucose. In view of the important role played by ABHD6 in lowering blood glucose, research institutions such as Scripps Research Institute and Montreal Medical Center have conducted extensive research. Several small molecule ABHD6 inhibitors have entered the preclinical research phase. However, the conversion of ABHD6 inhibitors into drugs still faces some challenges. For example, Prambanig et al. found that the role of ABHD6 in autoimmune cerebrospinal inflammation is not clear; Zhao et al found that ABHD6 inhibitors cannot be ignored in the central nervous system; whether it can be deeply analyzed from a molecular perspective; how to choose the best combination therapy methods, etc.
References:
Contact us today for a free consultation with the scientific team and discover how Creative Biogene can be a valuable resource and partner for your organization.
Inquiry
Copyright © Creative Biogene. All rights reserved.