Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Premade Virus Particles
Ready-to-Use | High Titer | Versatile Applications
Premade AAV, adenovirus, lentivirus particles, safe, stable, in stock.
Virus-Like Particles (VLPs)
Stable | Scalable | Customizable
Advanced VLPs for vaccine development (Chikungunya, Dengue, SARS-CoV-2), gene therapy (AAV1 & AAV9), and drug screening (SSTR2, CCR5).
Oligonucleotide Products
Precise | High Yield | Tailored Solutions
Accelerate your research with cost-effective LncRNA qPCR Array Technology.
RNA Interference Products
Targeted | Potent | High Specificity
Human Druggable Genome siRNA Library enables efficient drug target screening.
Recombinant Drug Target Proteins
Authentic | Versatile | Accelerated
Providing functional, high-purity recombinant proteins—including membrane proteins and nanodiscs—to overcome bottlenecks in drug screening and target validation.
Clones
Validated | Reliable | Comprehensive Collection
Ready-to-use clones for streamlined research and development.
Kits
Complete | Convenient | High Sensitivity
Chromogenic LAL Endotoxin Assay Kit ensures precise, FDA-compliant endotoxin quantification for biosafety testing.
Enzymes
Purified | Stable | Efficient
Powerful Tn5 Transposase for DNA insertion and random library construction.
Aptamers
Highly Specific | Robust | Versatile
Aptamers for key proteins like ACVR1A, Akt, EGFR, and VEGFR.
Adjuvants
Enhancing | Synergistic | Effective
Enhance immune responses with high-purity, potent CpG ODNs.
Laboratory Equipment
Innovative | Reliable | High-Precision
Effortlessly streamline DNA extraction with CB™ Magnetic-Nanoparticle Systems.
Stable Cell Line Generation
Reliable | Scalable | Customizable
Fast proposals, regular updates, and detailed reports; strict quality control, and contamination-free cells; knockout results in 4-6 weeks.
Target-based Drug Discovery Service
Innovative | Comprehensive | Efficient
Target identification, validation, and screening for drug discovery and therapeutic development.
Custom Viral Service
Versatile | High-Yield | Safe
Unbeatable pricing, fully customizable viral packaging services (covering 30,000+ human genes, 200+ mammals, 50+ protein tags).
Custom Antibody Service
Precise | Flexible | Efficient
End-to-end antibody development support, from target to validation, enabling clients to rapidly obtain application-ready antibodies.
Antibody-Drug Conjugation Service
Integrated | Controlled | Translational
Comprehensive solutions covering design, development, and validation to ensure conjugated drugs with consistent quality and clinical potential.
Protein Degrader Service
Efficient | High-Precision | Advanced Therapeutics
Harness the power of protein degraders for precise protein degradation, expanding druggable targets and enhancing therapeutic effectiveness for cutting-edge drug discovery.
Nucleotides Service
Accurate | Flexible | High-Quality
Custom synthesis of oligonucleotides, primers, and probes for gene editing, PCR, and RNA studies.
Custom RNA Service
Custom RNA ServicePrecise | Flexible | GMP-ReadyCustom
RNA design, synthesis, and manufacturing—covering mRNA, saRNA, circRNA, and RNAi. Fast turnaround, rigorous QC, and seamless transition from research to GMP production.
Custom Libraries Construction Service
Comprehensive | High-throughput | Accurate
Custom cDNA, genomic, and mutagenesis libraries for drug discovery, screening, and functional genomics.
Gene Editing Services
Precise | Efficient | Targeted
Gene editing solutions for gene editing, knockouts, knock-ins, and customized genetic modifications. Integrated multi-platform solutions for one-stop CRISPR sgRNA library synthesis and gene screening services
Microbe Genome Editing Service
Precise | Scalable | Customizable
Enhance microbial productivity with advanced genome editing using Rec-mediated recombination and CRISPR/Cas9 technologies.
Biosafety Testing Service
Reliable | Comprehensive | Regulated
Complete biosafety testing solutions for gene therapy, viral vectors, and biologics development.
Plant Genetic Modification Service
Advanced | Sustainable | Tailored
Genetic modification for crop improvement, biotechnology, and plant-based research solutions.
Plant-based Protein Production Service
Efficient | Scalable | Customizable
Plant-based protein expression systems for biopharmaceuticals, enzyme production, and research.
Aptamers Service
Innovative | Fast | Cost-Effective
Revolutionizing drug delivery and diagnostic development with next-generation high-throughput aptamer selection and synthesis technologies.
CGT Biosafety Testing
Comprehensive | Accurate | Regulatory-compliant
Internationally certified evaluation system for biologics, gene therapies, nucleic acid drugs, and vaccines.
Pandemic Detection Solutions
Rapid | Precise | Scalable
Balancing accuracy, accessibility, affordability, and rapid detection to safeguard public health and strengthen global response to infectious diseases.
cGMP Cell Line Development
Reliable | Scalable | Industry-leading
Stable expression over 15 generations with rapid cell line development in just 3 months.
Supports adherent and suspension cell lines, offering MCB, WCB, and PCB establishment.
GMP mRNA Production
Efficient | Scalable | Precise
Scalable mRNA production from milligrams to grams, with personalized process design for sequence optimization, cap selection, and nucleotide modifications, all in one service.
GMP Plasmid Production
High Quality | Scalable | Regulatory-compliant
Our plasmid production services span Non-GMP, GMP-Like, and GMP-Grade levels, with specialized options for linearized plasmids.
GMP Viral Vector Manufacturing
Scalable | High Yield | Quality-driven
Advanced platforms for AAV, adenovirus, lentivirus, and retrovirus production, with strict adherence to GMP guidelines and robust quality control.
AI-Driven Gene Editing and Therapy
Innovative | Precision | Transformative
AI-powered one-click design for customized CRISPR gene editing strategy development.
AI-Antibody Engineering Fusion
Next-Generation | Targeted | Efficient
AI and ML algorithms accelerate antibody screening and predict new structures, unlocking unprecedented possibilities in antibody engineering.
AI-Driven Enzyme Engineering
Smart | Efficient | Tailored
High-throughput enzyme activity testing with proprietary datasets and deep learning models for standardized and precise enzyme engineering design.
AI-Enhanced Small Molecule Screening
Predictive | Efficient | Insightful
Leverage AI to uncover hidden high-potential small molecules, prioritize leads intelligently, and reduce costly trial-and-error in early drug discovery.
AI-Driven Protein Degrader Drug Development
Innovative | Targeted | Accelerated
Use AI-guided design to optimize protein degraders, addressing design complexity and enhancing efficacy while shortening development timelines.
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
Adherens junctional associated protein-1 (AJAP1), also known as SHREW1, was found on invasive endometriotic epithelial cells. Gene expression profiling showed that AJAP1 is located on chromosome 1p36.32, which is closely related to the weakening of tumor suppressor function. In recent years, many studies have shown that AJAP1 deletion has an important relationship with glioma progression. AJAP1 may play an important role in the development of glioma as a tumor suppressor gene.
AJAP1 is a complete transmembrane protein with 411 amino acid residues and its structure includes a separable N-terminal signal peptide (residues 1-43), extracellular domain (residues 44-282), transmembrane domain (residues 283-303), and intracellular cytoplasmic domains (residues 304-411). AJAP1 conforms to the structure of the long signal peptide required by the NtraC model: a subdomain of the N-amino terminus, a transition zone rich in β-turns, and a subdomain of the C-carboxy terminus. AJAP1 is localized on the cell basement membrane, and this long signal peptide structure determines the localization of AJAP1 in the cell, which can promote the targeting of the newly generated AJAP1 to the rough endoplasmic reticulum, and then transfer and localize on the cell membrane. Furthermore, the N-domain alone primarily targets AJAP1 to the mitochondria. This hidden mitochondrial targeting signal is only activated under certain physiological conditions, such as apoptosis. In the analysis of the AJAP1 protein sequence, it was found that the extracellular domain of AJAP1 has a nuclear localization signal and a glycosylation signal in the intracellular cytoplasmic domain.
Biological Function of AJAP1
Studies have demonstrated a transient expression of AJAP1 by confocal microscopy, indicating that AJAP1 colocalizes with endogenous E-cadherin on the cell basement membrane. In in vitro experiments, the researchers found that AJAP1 may link to E-cadherin-mediated junction complexes via β-catenin. Chen et al. found that methylation of AJAP1 may lead to the release of β-catenin and the activation of Wnt signaling. Studies have found that signaling pathways such as Wnt can inhibit GSK-3-mediated phosphorylation of β-catenin, shifting β-catenin to the nucleus and interacting with transcription factors to regulate gene transcription. AJAP1 translocates into the nucleus by β-catenin to regulate gene transcription, which may have a potential effect on cell cycle and apoptosis. Zeng et al. found that AJAP1 regulates the transcription of MAGEA2 gene in the nucleus. Moreover, AJAP1 regulates the P53 pathway to increase caspase-3/7 activity, affecting the Bax/Bcl-2 ratio. Therefore, AJAP1 can induce mitochondria-associated apoptotic pathway to regulate cell proliferation and apoptosis.
In addition, AJAP1 may be linked to E-cadherin-mediated junction complex via β-catenin. AJAP1 acts through the E-cadherin-β-catenin complex in polar cells, which has a role in altering the morphology of GBM cells. E-cadherin mediates the cytoskeleton to regulate cell adhesion by relating proteins such as α and β catenin. Confocal imaging showed that AJAP1 stably transfected GBM cells, and their cell morphology, F-actin and β-tubulin distribution were all changed. F-actin is the main component of the focal adhesion complex, which has effects on cell adhesion, migration, and promotion of filopodia. AJAP1 can inhibit the formation of filopodia, reduce the formation of filopodia, increase the lamellipodia and change the distribution of β-tubulin to promote cytoskeletal reorganization, loosening the cell network and inhibit cell invasion and migration.
Figure 1. A hypothetic model showing the role of AJAP1 in primary endothelial cells. (Hötte., et al. 2017)
AJAP1 and Glioma
AJAP1 expression was found to be reduced in most glioma tumors and glioma cell lines. Studies have used microsatellite and single nucleotide polymorphism techniques to analyze 430 primary neuroblastoma specimens and found the smallest common deletion locus located in the 2Mb region of 1p36 and identified 23 genes in this region, including AJAP1. In addition, there is minimal deletion region between oligodendroglioma chromosome 1p36.31-p36.32, including AJAP1. The investigators evaluated 177 oligodendroglioma samples and found a common deletion region of approximately 630 KB in size, which contains only the gene AJAP1. Moreover, Han et al found a loss of AJAP1 in the early stages of glioma development through glioma gene profiling, suggesting that glioma may be associated with AJAP1. Since the cells of common origin may have common genomic changes, the glioma genomes of different tissue types, pathological grades, and developmental stages all have the deletion of AJAP1 expression, indicating that AJAP1 may act as a tumor suppressor gene in the development of glioma. makes an important impact.
Most glioma tumors and cell lines did not find mutations in the coding region by sequencing the remaining alleles of AJAP1, suggesting a weak relationship between AJAP1 gene expression and loss of heterozygosity. AJAP1 expression was found to be reduced in 86% to 92% of primary high-grade gliomas and all glioma cell lines, while gene mutations were found in only 16% of glioma samples, revealing a decrease in AJAP1 expression caused by genetic silence in usual.
Ohgaki et al. found that there are many CpG islands in the promoter of AJAP1, and CpG island is a good site for methylation-regulated gene expression. Methylation results in epigenetic silencing, which is a gene regulation mechanism widely used in many tumors. AJAP1 may follow a similar chromosomal P16 tumor suppressor gene, and the gene mutation rate is lower due to promoter methylation. Mutation and methylation analysis confirmed that AJAP1 expression was determined by promoter methylation of epigenetic silencing. Some studies have analyzed 253 cases of oligodendroglioma in the cancer genome database, indicating that AJAP1 gene expression level is related to AJAP1 promoter methylation, and the degree of methylation is inversely proportional to AJAP1 expression.
AJAP1 promoter is highly methylated in most glioma cell lines, whereas CpG island methylation of the AJAP1 promoter in normal tissues is rare. In addition, glioma cells treated with demethylating agents AZA and TSA can effectively reverse this silencing mechanism of genes, restore AJAP1 expression levels, and significantly reduce the migration and invasion of glioma cells. The above indicates that methylation of the AJAP1 promoter results in epigenetic silencing, resulting in decreased expression of AJAP1 in gliomas.
References:
Contact us today for a free consultation with the scientific team and discover how Creative Biogene can be a valuable resource and partner for your organization.
Inquiry
Copyright © Creative Biogene. All rights reserved.