Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Transfected Stable Cell Lines
Reliable | High-Performance | Wide Rage
Precision reporter, kinase, immune receptor, biosimilar, Cas9, and knockout stable cell lines for diverse applications.
Premade Virus Particles
Ready-to-Use | High Titer | Versatile Applications
Premade AAV, adenovirus, lentivirus particles, safe, stable, in stock.
Virus-Like Particles (VLPs)
Stable | Scalable | Customizable
Advanced VLPs for vaccine development (Chikungunya, Dengue, SARS-CoV-2), gene therapy (AAV1 & AAV9), and drug screening (SSTR2, CCR5).
Oligonucleotide Products
Precise | High Yield | Tailored Solutions
Accelerate your research with cost-effective LncRNA qPCR Array Technology.
RNA Interference Products
Targeted | Potent | High Specificity
Human Druggable Genome siRNA Library enables efficient drug target screening.
Recombinant Drug Target Proteins
Authentic | Versatile | Accelerated
Providing functional, high-purity recombinant proteins—including membrane proteins and nanodiscs—to overcome bottlenecks in drug screening and target validation.
Clones
Validated | Reliable | Comprehensive Collection
Ready-to-use clones for streamlined research and development.
Kits
Complete | Convenient | High Sensitivity
Chromogenic LAL Endotoxin Assay Kit ensures precise, FDA-compliant endotoxin quantification for biosafety testing.
Enzymes
Purified | Stable | Efficient
Powerful Tn5 Transposase for DNA insertion and random library construction.
Aptamers
Highly Specific | Robust | Versatile
Aptamers for key proteins like ACVR1A, Akt, EGFR, and VEGFR.
Adjuvants
Enhancing | Synergistic | Effective
Enhance immune responses with high-purity, potent CpG ODNs.
Laboratory Equipment
Innovative | Reliable | High-Precision
Effortlessly streamline DNA extraction with CB™ Magnetic-Nanoparticle Systems.
Stable Cell Line Generation
Reliable | Scalable | Customizable
Fast proposals, regular updates, and detailed reports; strict quality control, and contamination-free cells; knockout results in 4-6 weeks.
Target-based Drug Discovery Service
Innovative | Comprehensive | Efficient
Target identification, validation, and screening for drug discovery and therapeutic development.
Custom Viral Service
Versatile | High-Yield | Safe
Unbeatable pricing, fully customizable viral packaging services (covering 30,000+ human genes, 200+ mammals, 50+ protein tags).
Custom Antibody Service
Precise | Flexible | Efficient
End-to-end antibody development support, from target to validation, enabling clients to rapidly obtain application-ready antibodies.
Antibody-Drug Conjugation Service
Integrated | Controlled | Translational
Comprehensive solutions covering design, development, and validation to ensure conjugated drugs with consistent quality and clinical potential.
Protein Degrader Service
Efficient | High-Precision | Advanced Therapeutics
Harness the power of protein degraders for precise protein degradation, expanding druggable targets and enhancing therapeutic effectiveness for cutting-edge drug discovery.
Nucleotides Service
Accurate | Flexible | High-Quality
Custom synthesis of oligonucleotides, primers, and probes for gene editing, PCR, and RNA studies.
Custom RNA Service
Custom RNA ServicePrecise | Flexible | GMP-ReadyCustom
RNA design, synthesis, and manufacturing—covering mRNA, saRNA, circRNA, and RNAi. Fast turnaround, rigorous QC, and seamless transition from research to GMP production.
Custom Libraries Construction Service
Comprehensive | High-throughput | Accurate
Custom cDNA, genomic, and mutagenesis libraries for drug discovery, screening, and functional genomics.
Gene Editing Services
Precise | Efficient | Targeted
Gene editing solutions for gene editing, knockouts, knock-ins, and customized genetic modifications. Integrated multi-platform solutions for one-stop CRISPR sgRNA library synthesis and gene screening services
Microbe Genome Editing Service
Precise | Scalable | Customizable
Enhance microbial productivity with advanced genome editing using Rec-mediated recombination and CRISPR/Cas9 technologies.
Biosafety Testing Service
Reliable | Comprehensive | Regulated
Complete biosafety testing solutions for gene therapy, viral vectors, and biologics development.
Plant Genetic Modification Service
Advanced | Sustainable | Tailored
Genetic modification for crop improvement, biotechnology, and plant-based research solutions.
Plant-based Protein Production Service
Efficient | Scalable | Customizable
Plant-based protein expression systems for biopharmaceuticals, enzyme production, and research.
Aptamers Service
Innovative | Fast | Cost-Effective
Revolutionizing drug delivery and diagnostic development with next-generation high-throughput aptamer selection and synthesis technologies.
CGT Biosafety Testing
Comprehensive | Accurate | Regulatory-compliant
Internationally certified evaluation system for biologics, gene therapies, nucleic acid drugs, and vaccines.
Pandemic Detection Solutions
Rapid | Precise | Scalable
Balancing accuracy, accessibility, affordability, and rapid detection to safeguard public health and strengthen global response to infectious diseases.
cGMP Cell Line Development
Reliable | Scalable | Industry-leading
Stable expression over 15 generations with rapid cell line development in just 3 months.
Supports adherent and suspension cell lines, offering MCB, WCB, and PCB establishment.
GMP mRNA Production
Efficient | Scalable | Precise
Scalable mRNA production from milligrams to grams, with personalized process design for sequence optimization, cap selection, and nucleotide modifications, all in one service.
GMP Plasmid Production
High Quality | Scalable | Regulatory-compliant
Our plasmid production services span Non-GMP, GMP-Like, and GMP-Grade levels, with specialized options for linearized plasmids.
GMP Viral Vector Manufacturing
Scalable | High Yield | Quality-driven
Advanced platforms for AAV, adenovirus, lentivirus, and retrovirus production, with strict adherence to GMP guidelines and robust quality control.
AI-Driven Gene Editing and Therapy
Innovative | Precision | Transformative
AI-powered one-click design for customized CRISPR gene editing strategy development.
AI-Antibody Engineering Fusion
Next-Generation | Targeted | Efficient
AI and ML algorithms accelerate antibody screening and predict new structures, unlocking unprecedented possibilities in antibody engineering.
AI-Driven Enzyme Engineering
Smart | Efficient | Tailored
High-throughput enzyme activity testing with proprietary datasets and deep learning models for standardized and precise enzyme engineering design.
AI-Enhanced Small Molecule Screening
Predictive | Efficient | Insightful
Leverage AI to uncover hidden high-potential small molecules, prioritize leads intelligently, and reduce costly trial-and-error in early drug discovery.
AI-Driven Protein Degrader Drug Development
Innovative | Targeted | Accelerated
Use AI-guided design to optimize protein degraders, addressing design complexity and enhancing efficacy while shortening development timelines.
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
| Cat.No. | Product Name | Price |
|---|
The ADAM33 gene is a member of the superintegration of the integrin-metalloproteinase (ADAM) gene, which consists of eight domains, including signal peptide domain, prodomain, metalloproteinase domain, disintegrin-like domain, cysteine-rich domain, epidermal growth factor domain, transmembrane domain and cytoplasmic domain. ADAM33 molecule has five glycosylation sites, all of which are N-linked glycosylation at the aspartate, two in the precursor domain, two in the catalytic domain, and one in the decomposing domain, human ADAM33 molecule requires glycosylation to be biologically active.
ADAM33 is identified as an asthma susceptibility gene. ADAM protein has biological effects such as cell signal transduction, cell fusion, intercellular adhesion and metalloproteinase activity. Its metalloproteinase activity can cause damage to alveolar tissue structure and affect lung function indicators. ADAM33 is an active protease that activates α2-macroglobulin, an important member of the lung defense system, and is involved in airway obstruction and tissue remodeling. So it is closely related to the physiological processes in which airway inflammatory reactions occur. Despite a certain understanding of the ADAM33 gene function such as conduction signals, activation of cell proliferation, decomposition of extracellular matrix, and increase of fibroblast mobility, but it is still in its infancy.
ADAM33 and Asthma
Bronchial Asthma is a chronic airway inflammation involving mast cells, eosinophils, and T lymphocytes. It not only has bronchial smooth muscle spasm, but also mucosal edema, exudation, and mucosal gland hyperplasia. Airway smooth muscle cells and fibroblasts are involved in airway hyperresponsiveness and airway remodeling. This is consistent with the predominant expression of ADAM33 mRNA in smooth muscle cells, fibroblasts and myofibroblasts. The expression of ADAM33 mRNA in airway remodeling in a mouse model of chronic asthma revealed that repeated allergic stimulation can significantly increase the expression of ADAM33 mRNA in mouse lung tissue, thus indicating that ADAM33 plays an important role in airway remodeling in chronic asthma.
There is a wide-ranging linkage disequilibrium between the SNPs of the ADAM33 gene, and it is not possible to determine which SNP plays a leading role in the development of asthma. The current hypothetical mechanism: (1) ADAM33 may participate in airway remodeling like other MMPs (such as MMP9); (2) ADAM33 can promote membrane-bound growth factors (such as EGF, TGF) and their receptors, stimulating gas Proliferation and differentiation of interstitial cells; (3) ADAM33 may bind to fibroblasts to increase mobility; (4) signaling function of ADAM33 activates signaling pathways for cell proliferation and differentiation; (5) binding to integrin, Affects the interaction between interstitial cells or cells and matrix.
Figure 1. Key cells influenced by ADAM33 in airway remodelling in asthma. (Mahesh, et al. 2013)
ADAM33 and COPD
Chronic obstructive pulmonary disease (COPD) is a long-term, recurrent and preventable respiratory system disease. ADAM33 is the first identified bronchial asthma and airway hyperresponsiveness gene that is selectively expressed in mesenchymal cells and participates in the airway remodeling process throughout the progression of the lesion. Recent studies have shown that the polymorphism of the ADAM33 gene leads to accelerated decline in lung function and impaired lung function. It is found that ADAM33 gene polymorphism is highly correlated with the pathogenesis of COPD and has a significant impact on the number of airway inflammatory cells and lung function.
Single nucleotide polymorphisms (SNPs) refer to the substitution, transformation, etc. of a single base at a particular position in a normal individual or population. Currently, it is widely used in biologically relevant fields such as genetics, drug resistance, and disease susceptibility. Although SNPs are not directly pathogenic, they can make organisms more susceptible to certain pathogenic factors and thus more susceptible to the disease.
The ADAM33 gene is mainly expressed in fibroblasts of smooth muscle cells and lung tissues. It is not expressed in epithelial cells, T lymphocytes and inflammatory cells. This selective expression suggests that its function may be associated with airway remodeling and the progression of the disease. Moreover, airway remodeling also occurs during the progression of chronic obstructive pulmonary disease (COPD). There are more than 55 polymorphic loci in the ADAM33 gene, 8 of which are associated with the risk of COPD. The Q-1 locus single nucleotide polymorphism of the ADAM33 gene is a risk factor for the overall incidence of COPD. The T1 locus of the ADAM33 gene is associated with the risk of COPD, but there may be variability in the ADAM33 gene polymorphism in subjects of different ethnicities and environments, leading to differences in its association with COPD.
Studies have shown that alleles of ADAM33 can increase the incidence of COPD. The meta-analysis by Zhou et al. showed that COPD susceptibility in Asian populations was associated with Q-1, F+1, ST+5, T1, T2 and S1, while T2, Q-1 and ST+ 5 were associated with European populations, suggesting there may be variability in the ADAM33 gene polymorphism in subjects of different ethnicities. The current meta-analysis investigated the association between ADAM33 gene polymorphisms and chronic obstructive pulmonary disease. The results of the study showed that S2 and T1 homozygous carriers did not increase or decrease the risk of chronic obstructive pulmonary disease and had little effect on the treatment of COPD.
References:
Contact us today for a free consultation with the scientific team and discover how Creative Biogene can be a valuable resource and partner for your organization.
Inquiry
Copyright © Creative Biogene. All rights reserved.